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Plasma Shielding Effects on Ionic Recombination
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Monte Carlo calculations are presented of the ion-ion recombination rate coefficient
for the Kr+ + F + Ar reaction. The effect of other ions on the recombination rate is
taken into account by use of the Debye screened potential rather than the Coulomb po-
tential. This potential should be valid for ion densities between 10' and 10' cm 3.
Results are presented for ion densities in this range and for neutral pressures of 0.5
to 8.0 atm. It is found that screening effects significantly decrease the ion-ion recom-
bination rate.

PACS numbers: 34.70.+e, 34.20.-b, 82.30.Fi

interest in the theory of ion-ion recombination
has increased recently because of the develop-
ment of excimer lasers. In electron-beam-
pumped, rare-gas-halide, and metal-vapor-
halide lasers, for example, recombination of po-
sitive rare gas or metal ions and negative halo-
gen ions is primarily responsible for the forma-
tion of the upper laser state. ' Until recently, ex-
periments involving ion-ion recombination were
performed in a low-plasma-density regime. In
lasers, however, electron and ion densities may
easily exceed 10 ' cm ' and may even exceed 10"
cm ' in some high-power lasers. In such plas-
mas the screening of the Coulomb potential be-
tween ions by other ions and by electrons may be
significant. Screening should have the effect of
slowing down the recombination rate and, hence,
the formation rate of the product species. Previ-
ous analytical theories' ' and numerical calcula-
tions" 6 of ion-ion recombination have not includ-
ed screening effects. In this Letter we present
results of Monte Carlo calculations for the reac-
tion

Kr ' + F + Ar - Kr F*+Ar

as a function of pressure and ion density using
the Debye-Huckel screened potential. We discuss
the limitations of this model and other, more ac-
curate, approaches to the problem.

The Kr'-F -Ar system is of obvious interest
for the development of lasers. In addition, the
simple nature of the potential curves and the ab-

sence of alternative channels make this a good
model system for the theoretical study of ionic
recombination. Mutual neutralization is likely to
be a small effect (0 =10 ' cm' s '),' since the
curve crossing occurs at 21 A.~ Because the ion-
ic species lie lower in energy than the excited
states of the neutral third body, energy loss oc-
curs only through elastic collisions.

The theory of ion-ion recombination in low-
density gases was first developed by Thomson'
and the high-density limit was found by Langevin
using mobility theory. Since then there have been
efforts by various authors, notably Natanson,
Bates and Flannery, Flannery, ~~ and Wadehra
and Bardsley' to connect the low- and high-densi-
ty limits and to provide an accurate theory for
intermediate density. Most recently Bardsley
and Wadehra' have performed classical-trajecto-
ry Monte Carlo calculations in an effort to avoid
some of the ad hoc features, such as the concept
of trapping radius, of the analytical calculations.

The simplest means of accounting for the ef-
fects of other ions on the recombination rate is to
assume that the recombining ions interact via a
screened Debye potential rather than the Coulomb
potential. The Coulomb potential is damped
by an exponential screening factor exp(-r/X),
where X =(4we'Q;n;Z;/kT;) ' ' is the Debye
length. In the calculation presented here we as-
sume the temperature of any electrons to be ele-
vated (-1 eV) above that of the ions and neutrals
(-300 K). The electrons do not, therefore, con-
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where r, &
is the pericenter of the orbit, E, is the

total energy, and f is the angular momentum. For
a Coulomb potential (2) can be integrated analyt-
ically, giving stable conic-section orbits. The
Debye potential offers several complications.
First, the short-range nature of the potential al-
lows for the existence of a centrifugal barrier for
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tribute significantly to the screening. This po-
tential treats ions (other than the recombining
pair) as a continuous space-charge distribution.
Screening effects begin to become important at
ion densities of about 10" cin ', when the inter-
atomic distance becomes comparable with the
Debye length. At ion densities above 10" cm '
the Debye approximation, which is derived from
the leading term in a cluster expansion, fails as
higher-order terms become inportant.

We calculate the probability of recombination
by use of a Monte Carlo simulation. A detailed
description of this technique has been given by
Bardsley and Wadehra. ' We will discuss it brief-
ly here. The calculation begins with an ion pair
having an initial separation ro and an initial in-
ward relative velocity. The motion of the ions is
computed as they move in classical orbits under
the inQuence of the Debye potential and undergo
collisions with the neutral gas atoms. The parti-
cles are followed until their relative energy falls
below some critical value, when we assume re-
combination has occurred, or until their separa-
tion becomes larger than r,. The initial separa-
tion must be large enough that the initial velocity
distribution is Maxwellian, and small enough
that there are few ions closer than ro to a given
pair. We find r, =1000ao to be a good choice. We
found the recombination probability to be insensi-
tive to the critical energy for energies less than
about —5kT. We chose E„;,=-12kT. The prob-
ability of collision with a neutral is calculated by
use of the Langevin ion-atom potential, which
gives a constant collision frequency"

~' = 2mÃ(pe'/p')'i', (1)

where Ã is the neutral density, p is the neutral-
atom polarizability, and p, is the ion-atom re-
duced mass.

The problem of calculating the trajectories of
the ion pair can be reduced to that of a single par-
ticle moving in a central force field. The orbit
around the center of force with potential V(r) is
described by the quadrature'~

large angular momenta. Thus, ion pairs with
positive energy may be bound within this barrier.
However, since the barrier is quite small (typi-
cally -0.01kT), it has little effect on the recom-
bination probability. Second, the integral (2) can
no longer be performed analytically. For any po-
tential V(r) we determine r „numerically and

evaluate (2) numerically by repeated Gauss-Cheby-
shev quadrature over subintervals of the domain

(r, »r). This allows the singularity at the turning
points of the orbit to be integrated out. For the
Debye potential we have open orbits or bound or-
bits which precess about a constant apsidal angle.

Because the angular momentum is a constant of
the motion, 40 between collisions is directly pro-
portional to 4t. Random numbers are generated
to represent random collision intervals &t and,
hence, directly provide the angular displacement
and, through (2), the radial displacement in the
orbit between collisions. Before a collision a
random velocity is generated for the neutral, ac-
cording to a Maxwellian distribution, and after
the collision a new relative velocity is generated
for the ion-neutral pair. A check is made to see
whether the ion pair has recombined (i.e., the
relative energy is less than —12kT). If not, the
new orbit is computed and the ion pair is followed
until it either leaves the sphere or again collides
with a neutral atom.

At each of the pressures and densities shown in
Fig. 1 we simulated ten experiments of 1000 ion
pairs each. This gives a statistical uncertainty
in the recombination rate of about 3'. We then
calculated the recombination rate coefficient n
from

a =pro'v wn(r, )/n(~), (2)

where v =(RT/mp, )'i' is the mean velocity, ~ is
the recombination probability from the Monte
Carlo simulation, n(rg is the ion number density
at r =r» and n(~) is the average (macroscopic)
ion density. Note that the apparent dependence of
n on r, is compensated for by the variation of zv

and n(r, ). Test calculations indicate that n does
not depend on r, provided r, satisfies the criteria
mentioned above. The ion density at the edge of
the sphere, n(r,), is calculated from diffusion
theory. " The Qow of ions across a spherical sur-
face of radius r is given by

4vr'[D d n (r )/dr +KF (r ) n (r )J,

where D is the diffusion coefficient, K is the
ionic mobility, and &(r) =-VV(r) is the electric
field at r. Atr =r, this flow is equal to nn(~)
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TABLE I. Slope of recombination rate coefficient
versus pressure in the low-pressure (P ( 0.5 atm) limit
and slope of recombination rate coefficient versus in-
verse pressure in the high-pressure (P ) 20 atm) limit,
for various ion densities.
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FIG. 1. Recombination rate coefficient for Kr+ and
F in Ar. Solid curve, results of Ref. 6 for Coulomb
potential. Points labeled with error bars, calculations
for ion densities of (1) 0, (2) 10'3 cm ~, (3) 10'4 cm 3,
and (4) 10 ' cm '. The corresponding Debye lengths
are , 5050+p ~ 1600Qp and 505+0 & respectively.

r,'vzv e " t'- e' exp(- x)I dx

This expression can now be used in (3) to calcu-
late the recombination rate coefficient n. Follow-
ing Bardsley and Wadehra' we can write (3) as

1 T, eT, 1
CY AT kTA,

(6)

where T, is the first term in Eq. (5), T, is the
integral in (5), and nT = zr, 'vw and az =47reK are
the Thomson and Langevin limits respectively.
In the limits of high and low densities the first
and second term, respectively, will dominate.

We have calculated the ionic recombination rate
coefficient for Kr' and F in Ar for five pres-
sures and ion densities of 10~', 10, and 10"
cm ' at a gas temperature of 300 K. The corre-
sponding Debye lengths are 5050a» 1600a» and

=mr, svmm(ro). These two expressions can be set
equal and the resulting differential equation
solved with use of the Debye potential. Using the
Einstein relation D kTK/e and letting r - ~, we
can write the solution as

a(~) ' e'exp(-rgb)
I(r,) r,kT

505a„respectively. The results are shown in
Fig. 1 along with the Bardsley and Wadehra' Cou-
lomb results for comparison. Plasma shielding
clearly results in a significant reduction in the
recombination rate. In the low-pressure (Thom-
son) limit the recombination process becomes
purely three body and n will be directly propor-
tional to the pressure. In the high-pressure
(Langevin) limit the recombination is diffusion

limited and the rate will be inversely proportional
to the pressure. The proportionality coefficients
for the low- and high-pressure limits are shown
in Table L

As mentioned above, the Debye potential is
valid up to ion densities of about 10~' cm '. At
greater densities the higher-order correlation
functions become significant. The theory of elec-
trolytic solutions" suggests that the hypernetted-
chain equation, which converges well for the long-
range Coulomb pair potential and is valid to the
fourth order in the density, will provide a better
approximation to the potential at higher ionic den-
sities.

Finally, it should be mentioned that there are
no experimental data for this recombination rate
with which to make comparisons. This is gener-
ally the case for ionic recombination. Neverthe-
less, these calculations serve to demonstrate the
extent of the shielding effects and to provide data
with which analytic theories of recombination can
be compared.
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