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Recently the loop formulation' of gauge theories
has been given much attention. It has the nice
properties of being the minimal necessary object
for a gauge theory, having simple gauge-trans-
formation properties' and being the spinlike quan-
tity for the lattice field theory. ' Of particular
interest, besides the derivation of the stringlike
equations, is the realization that the Yang-Mills
equations can be formulated in the loop space as
a formal analogy of the classical chiral equa-
tions." Thus it has been suggested that the in-
verse-scattering equations can be formulated for
these loop-space ehiral equations and the exis-
tence of infinite numbers of conservation laws
will follow just like the ordinary chiral equation. '
This raised the hope that the loop-space chiral
equations were also a totally integrable system
and, therefore, possibly lead to the full solution
of the Yang-Mills equations. However, here we
want to discuss some intricate properties of the
integrability conditions of the loop-space chiral
equations, which do not have their correspon-
dence in the ordinary chiral' equations.

First we discuss the integrability conditions of
the nonlocal currents in two possible different
situations. In the first case, the "generating"
functions are functionals of the loop alone. We
show that the integrability conditions are not sat-
isfied and higher-order conserved nonlocal cur-
rents do not exist. In the second case, the "gen-
erating" functions are functionals of the loop as
well as a parameter. The integrability conditions
at a restricted point of the parameter are satis-
fied; however, there is an infinite fold of arbi-
trariness. These points are then demonstrated

with an explicit example. Afterwards we make
connection of the loop-space chiral equation with
the formulation of the inverse-scattering equa-
tions in the loop space and again show similar
conclusions. The points elaborated here indicate
that additional guiding principles are needed in
order to make unique connections between the
loop-space chiral equations and the infinite con-
served nonlocal currents or the inverse-scatter-
ing formul. ation.

Chiral Fields in Loop Space.—Let us consider
the phase factor along a closed loop l =x"(s),

4„„,=g(l) =P exp(i)A„dx„) (&)

The functional differentiation of the loop phase
factor is defined as the change in p(l), as l chang-
es to /', which is infinitesimally deformed from
l ats,

~4(l) 4(l') —4(l)«"(s) ds dx" (x)

=@„,fqu[x(s)]

It is just the parallel transported "normal flux"
per unit area that went through the deformed area.
Define the loop-space gauge potential

&„(l,s) =0(l) '&0(i)/«" (s)

=e „,f,„[x(s)]x„(s)@„,.
Functionally differentiating it again, and after
some work, one can show"

) +[&v(l, s), F„(l,s')] = 0, (4)« "(s') 5x"(s)

which just gives the projected Bianchi identity

j&„f„[ ( )1]
' +(&.f „[ ( )]] ' .+(~ g, .[ ( )]] ' .= 0,
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and

58'„(t,s)/5x „(s)=O,

which gives the projected Yang-Mills equation

(u„f„„[x(s)]&x„(.) =O,

5F,(t, s)/5x'(s') = 56', (t, s')/5x'(s), (8a)

which is false, unless s'-s,' for p, = 1 and v = 2,

5P, (t, s)/5x'(s') =- 5F, (t, s')/5x'(s), (8b)

which becomes Eq. (5) only in the limit s'- s.
Therefore, we see that higher conserved currents
cannot be constructed by this procedure.

Case (2): x~') is not only a functional of the
loop but also a parameter s. Now Eq. (6) becomes

5X'" (t, s) 5X'"(t,s)

where Q& denotes covariant differentation. The
geometric meaning of the loop-space Eq. (4) is
that the loop phase factor arrived from an initial
loop to a given final loop is independent of the dif-
ferent volumes swapped out by the intermediate
loops.

Integrabitity of the "Generating" Functions.—Equation (5) is like a continuity equation, and
so we try to follow the standard procedure and
identify the first current as follows (here we
specialize to the case in two dimensions, though
the conclusion is general):

V„" (t, s)=-F„(t,s) = e„,5P/5x "(s). (6)

This satisfies Eq. (5), but the question is whether
Eq. (5) provides the sufficient conditions for the
integration of X

' from Eq. (6). We shall discuss
separately the following two possible cases.

Case (1): x~') is a functional of the loop above,
i.e., Eq. (6) reads

F„(t,s) =e„„5X'"(I)/5x"(s). (6')

Just as in the finite-dimensional case, the integ-
rability condition of x~')(t) is

5'x'"(t)
5x "(s') 5x"(s) 5x"(s) 5x "(s')

From 5X ' (t)/5x "(s) =- e „„6'„(t,s), Eq. (7) gives

e„5F„(t,s)/5x "(s') =e„„5F„(t,s')/5x" (s); (8)

for p =v =1,

I

= lim, +&„(t,s) X~" ')(t, s),. 5x„s'

where X~" ' satisfies

V„" ' (t, s) =e„„5X" ' (t, s)/5x "(s).

(9)

Using the original equations of motion Eqs. (4)
and (5), one can easily show the V&~")(t, s) 's are
conserved, i.e.,

5V„&")(t, s)/5x„(s) =O. (lo)
Notice here that the arbitrariness in X~" ')(t, s}
is

reflected�'directly

in the next current V&
" (t, s).

Actually both cases can be demonstrated ex-
plicitly from the solution of the Yang-Mills equa-
tion in two dimensions. In R' we have the follow-
ing solution for the gauge potentials of the Yang-
Mills equations:

b, =-x,c, b, =0, and then f» =c,

where c is an element of g. Of course, we as-
sume c &0. It is easily seen that Eq. (11) is the
general solution of the Yang-Mills equations in
R'. From Eq. (3) we have

P, (t, s) =cdx, (s}/ds,

8', (t, s) =-cdx, (s)/ds.

The analogy of Eq. (6) is

5X/5x'(s) =&,(t, s) =- cdx, (s)/ds,

5x/5x'(s) = —6', (t, s) = —cdx, (s)/ds.

(12)

(13)

Notice that all parameters coincide at a point s.
Then from 5X~') (t, s)/5x'(s) =e „&F„(t,s) the inte-
grability condition becomes Eq. (8) with s'-s.
Thus the equations of motion Eq. (5) do provide
integrability of X("(t,s) from (6'). However, the
peculiar situation here is that Eq. (6') constrains
x(t, s) only when the parameter s' of 5x„(s') coin-
cides with s of x(t, s), thus it does not sufficiently
constrain x(t, s) and there are infinitely many

x(t, s)'s that can satisfy Eq. (6"). This is a mani-
festation that additional information is needed in
order to integrate uniquely the system from one
point of the loop to the other.

Since X~') (t, s) can be constructed, now we can
follow the standard iterative procedure to con-
struct the nth current from the (n —1)th current,

V &")(t,s)

Thus the integrability condition of Eq. (6) becomes

52X(1)(t s) 52x(1)(t s)
5x'(s) 5x"(s) 5x" (s) 5x'(s) =0. 7I

In case (1), X = X(1) a functional of loop alone,
clearly from Eq. (13),

5'X(t)/5x'(s') 5x'(s) =- c5(s' -s)
& O'X(t)/5x'(s) 5x'(s') =- c5(s —s'), (14)
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where i =1 or 2, since 5(s' —s) is odd under inter-
change of s and s'. But in case (2), if we allow
y' =y(l, s), a, functional of both the loop and a pa.-
rameter, then Eq. (13) has an infinite number of
solutions. One of them has been constructed by
Polyakov, '

y(l, s)

see what a similar formulation for the loop space
will imply.

Case (1): In this case the higher-order conser-
vation laws do not exist, and so the inverse-scat-
tering equations cannot be constructed from them
with use of the standard method. ' However, to
demonstrate a point, following the spirit of Ref.
5, we construct one in analogy to Eq. (17),

and

C (s —t)(s -u)
dtdu

[( )2 ( )2]2 x))( t) x))(u)p (I 5) +P& (), s) —ye&, „))@(),y) =0. (18)

6X(i, s)
6x „(t)

~C (s —t)(s -u)
"[( -t)'+( — )']'"""' (16)

Note that 4 (l, y) is a functional of loop and the pa-
rameter y. What are the conditions for the inte-
gration of (I)(l, y) t Equation (18) can be rewritten
as

Using the fact 5(x) = lim, ,[- 2&x/7) (x'+ e')'], so
that Iim, , f(s -t)(s -u)/[(s -t)'+(s -u)']']
=-27)6(s -u), we obtain

6y(l, s) 5y(l, s) dx„(s)
, 6x"(t) 6x"(s) ds

which is precisely Eq. (13). However, this is
only one of the infinite ways of constructing the
solution. We can replace (s —t)(s -u)/[(s -t)'
+(s -u)']' by any function, e.g. , ([(s —t)/(s
-u)'] exp[- (s -u)'/(s -t)']+(t-u )j, which is
—-', g6(s -u) in the limit t —s. This is a conse-
quence of the fact that Eqs. (6") do not constrain
y(l, s) when s' of 5x"(s') and s of y(l, s) are differ-
ent.

Loop Space Inverse -Scattering E-quations and
Thei~ Integ~ability. —Following the inverse-scat-
tering equations in the ordinary space

d
„+A„(x)-yp„„„cp(x,y) =0, (17)dx" "'dx"

where y is an arbitrary parameter, we like to

( )
c'(i, y)

, [6'„(l,s) +ye„.V.(l, s)]C (i,y).
1

1+y'

Requiring, for arbitrary y,
6'C (l, y) 6'4 (l,y)

5x" (s) 6x"(s') 5x"(s') 5x"(s) (20)

m. (l, s) 56'8(i, s )
5x "(s') "' 5x "(s)

which for p, = 1 and v = 1 becomes

6S,(i, s) 6S,(i, s )
5x'(s') 5x'(s)

and which for p = 1 and v = 2 becomes

66', (l, s) m;(i, s )
6x'(s') 6x'(s)

for the y term,

(21)

(21a)

(2 1b)

one obtains the following conditions for arbitrary
s and s'. For the y

' term,

+ '„', +[a„„6' (l, s'), e„86:s(l,s)]=0;M:„(l,s') 6F,(l, s)
5x' s 5x" s' (22)

for the y
' term. ,

+c„s &
', +[e& P„(l, s), 6(l, )s] [+&6(l, s'), e„&F~(l, )s]=0;

5F (l, s') M's(l, s)
(23)

and for the y' term,

6m~(i, s ) 66:,(l, s)
6x "(s) 5x"(s') (24)

We see that they require much more than the loop-space chiral Eqs. (4) and (5) for integrability.
Case (2): In this case infinite number of conserved currents satisfying Eq. (5) can be constructed,
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so that we have

(25)v„'"'(l, s) = e„„pi"'(l, s) = .
)

+s„(l, s))y'" "(l, s) .~" ~x, s ' ~x„s
Multiplying Eq. (25) by L" and summing over all n, and then defining qr(l, s, L) =—Q„oL"y(")(l, s), we
obtain the inverse-scattering equation for y(l, s, L), which is in the form of Eq. (18) with y = L

lim „ , + P„(l, s) —l. ' e ~ , ~)C
(l, s, Q = 0 .. 5x" s' ~Ax, s' (18')

The integrability conditions in the limit s'- s are
just from Eqs. (21) to (24) with s'-s, which im-
ply Eqs. (4) and (5), the equations of motion.

In conclusion, the above discussions indicate
that the loop-space chiral equations are not a
totally integrable system in the ordinary sense.
The loop-space chiral equations do not provide
enough information for the integration of loop-
space currents from one point of the loop to anoth-
er in a unique way. " However, in spite of such
difficulties, the observation that the Yang-Mills
equations give the loop-space chiral equations is
such a beautiful one that, with further insight, it
is bound to lead to new understanding of the gauge
theories.
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