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can simulate a spectrum in the "incommensurate"
region and show the substantial deterioration of
the fit when we take y to be either ten times or
one-tenth the y which gives the best fit. It is
clear that the spectrum at 100 K gives a value of
y which we see from Fig. 2 exhibits a definite
commensurate component. Thus we confirm Mc-
Millan's picture of the incommensurate phase.

Nakanishi and Shiba found that one should also
include amplitude modulation. Moreover, it is
possible that the width of g(&u; r;) is mode&ated.
Such effects may account for the residual dis-
crepancies between our line-shape theory and
data. However, for the values of y we obtain,
the line shapes are insensitive to amplitude mod-
ulation (proportional to the phase modulation) of
up 'to 50%%up.

We are grateful to W. L. McMillan for helpful
discussions. This work was supported in part by
the U. Q. Department of Energy under Contract
No. DE-A C02-76ER01198.

&J. A. Wz].son, F. J. DiSalvo, and S. Mahajan, Adv.
Phys. 24, 117 (1975); J.A. Wilson, Phys. Rev. B 15,
5748 (1977), and references therein.

F. J. DiSalvo, in Electron-Phonon Interactions and
Phase Transitions, edited by T. Riste (Plenum, New
York, 1977), p. 107.

J. A. Holy, M. V. Klein, W. L. McMillan, and S. F.
Meyer, Phys. Rev. Lett. 37, 1145 (1976); J. A. Holy,
thesis, University of Illinois, 1977 (unpublished).

D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Phys.
Rev. B 16, 801 (1977).

W. L. McMillan, Phys. Rev. B 12, 1187 (1975), and
14, 1496 (1976).

K. Nakanishi and H. Shiba, J. Phys. Soc. Jpn. 44,
1463 (1978).

C. Berthier, D. Jerome, and P. Molinie, J. Phys. C
11, 797 (1978).

R. A. Craven and S. F. Meyer, Phys. Rev. B 16,
4583 (1977).

R. M. Fleming, D. E. Moncton, D. B. McWhan, and
F. J. DiSalvo, Bull. Am. Phys. Soc. 25, 199 (1980).

R. A. Wind and S. Emid, J. Phys. E 8, 281 (1975).
Note, however, that the RC filter distortion should be
given by a complex transfer function.

Direct Measurement of the Bulk Density of Gap States in n-Type
Hydrogenated Amorphous Silicon

J. D. Cohen, D. V. Lang, and J. P. Harbison
Bell Laboratories, Murray Hill, Ãem Jersey 07974

(Received 21 February 1980)

The first direct measurement is reported of the bulk density of deep states in n-type
a-Si:H. The spectral distribution is considerably different from previous field-effect and
C-V measurements and the overall density is much lower than has previously been re-
ported. The states seen in these samples appear to be extrinsic and suggest that the ex-
trapolated total density of deep states in pure a-Si:H may be less than 10~ cm ~.

PACS numbers: 72.80.Ng, 71.55.Jv

Recently, there has been considerable interest
in determining the concentration and energy dis-
tribution of states in the gap of hydrogenated
amorphous silicon. This stems from the fact that
nearly all of the important transport and optical
properties of this material are influenced by
these gap states. The most widely accepted tech-
niques for obtaining such information have been
field effect' and metal-oxide-semiconductor C-V
measurements. ' However, these methods are
rather indirect and may be influenced by states
located near the surface. In this Letter we re-
port the first measurement of the spectral distri-
bution of gap states in the bulk of n-type a-Si: H.
Our results differ quite markedly from those of
previous measurements. "

The techniques which we employ are well known
in crystalline semiconductors and are generally
referred to as space-charge spectroscopy. ' Such
techniques have recently been applied to a-Si:H, '
but these early results were not definitive enough
to yield a complete picture of the density of gap
states. Since these methods as well as field-ef-
fect and C-V measurements are based on space-
charge layers, it is essential to understand the
differences between these techniques. In field-
effect and C-V measurements one changes the
bias voltage which simultaneously varies both
the width of the space-charge layer and the inter-
section of the Fermi level with the density of
states. The data are thus a convolution of the en-
ergy and spatial variation in gap states. All anal-
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FIG. 2. Superposition of hole trap (dashed) and elec-
tron trap (solid) densities of states obtained from DLTS
spectra for two of our samples. The vertical dashed
lines correspond to the minimum energy observable.
Also shown are published data for field-effect (Ref. 1.)
and conductance (Ref. 11) measurements.

emission gap of between about 1.6 and 1.8 eV.
The peaklike feature displayed by the voltage-

pulse data may correspond to a cutoff in electron
emission probability due to the change in equilib-
rium occupation near midgap. Nonetheless, one
can demonstrate the measured activation energy
of this feature (0.85 eV+ 10%) is a valid marker
to define the energy scale displayed in Fig. 2. In
general, the DLTS temperature scale is propor-
tional to an energy scale, E =q(~)T, with the con-
stant of proportionality for a particular DLTS
rate window ~ ' given by q(7) =k ln(vv), where k
is the Boltzmann constant and v is the exponen-
tial prefactor in the expression for the thermal
emission rate. The factor v may often be expect-
ed to exhibit a weak temperature dependence.
Our electron capture measurements indicate a
variation of less than a factor of 10 over the tem-
perature range of the electron emission peak in
Fig. 1. Since g depends only logarithmically on
v, the effect on the energy scale is, therefore,
at most 8",,'. Using the 0.85-eV energy marker,
we obtain q(100 msec) =28k+ 10% for Figs. 1 and
2. Thus our energies obtained from the DLTS
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FIG. 3. Integrated deep-trap concentration Nz vs
shallow level concentration N, in various samples.
Solid circles are electron traps; open triangles are
hole traps.

N, = —(C'/EqA')(dC/dV)-',

spectrum are accurate to within 0.1 eV.
For any density-of-states determination there

exist three different energy scales; namely,
thermal activation energy, thermal equilibrium
energy, and optical energy. For a rigid lattice
these scales are identical, but if lattice relaxa-
tion is important these three scales may be quite
different. The thermal activation energy scale
shown in Fig. 2 is larger than the thermal equi-
librium scale by an energy difference which is
the height of the barrier to carrier capture. '
Our electron capture measurements place an up-
per limit of 0.15 eV on this difference. There-
fore our energy scale differs from the thermal-
equilibrium energy scale (which would be ob-
tained in an ideal field-effect measurement, for
example) by no more than 0.15 eV. The optical
energy scale could be significantly larger than
either type of thermal energy.

The absolute density scale in Fig. 2 is quite
accurate. The result of a capacitance spectros-
copy measurement gives the ratio of the deep-
level-trap concentration N~ to the uncompensat-
ed shallow-level concentration N, .'" Therefore,
N, must be mea, sured to determine N~. The val-
ue of N, is easily obtained from C-V measure-
ments via the well-known relation
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where C is the capacitance, e the dielectric con-
stant, A the area of the sample, q is the elec-
tronic charge, and V is the bias voltage. In n-
type crystalline semiconductors N, corresponds
to the net shallow-donor concentration, ND -N„.
Even in the case of amorphous semiconductors
Eq. (1) is a well-defined expression which can be
used to obtain N, . However, since the shallow
states are expected to be smeared into a broad
spectrum we must define the physical meaning of
N, more clearly. Namely, for the case of elec-
trons

N =n(T)+ J g(Z')f (E', T) dE', (2)
C

where n(T) is the density of mobile electrons in
conduction states above E„f (E,T) is the Fermi
distribution function for electrons, and 5 is the
energy of the deepest level which can thermally
empty on the time scale of the measurement of
dC/dV in Eq. (1). Thus as the time scale of the
dC/dV measurement becomes very short 5 ap-
proaches zero, and as the time to measure dC/
d't/" becomes very long 5 approaches midgap and
N, =n+Nr. The values for g(E) given in Fig. 2
are accurate to within better than a factor of 2,
with the major uncertainty due to spatial varia-
tions of N~ and N, within the sample.

Comparing samples 1 and 2 in Fig. 2 indicates
the measured density of states is most likely not
an intrinsic property of a-Si:H. This conclusion
is strengthened by the integrated trap-concentra-
tion data in Fig. 3, which shows the results of
TSCA P total-trap-concentration measur ements
on a number of different samples. In this figure
N~ corresponds to the total density of hole or
electron traps deeper than about 0.5 eV and N,
corresponds to Eq. (2) with 5 = 0.5 eV. Note that
both the electron and hole traps vary over nearly
two orders of magnitude. The two samples with
N, & 10" cm ' were not intentionally doped but
had considerably lower resistivity than our nor-
mal undoped semi-insulating samples for which
capacitance spectroscopy is impossible. The
other nine samples were doped with phosphorous.
While higher N, values in this group usually cor-
related with higher PH, concentrations during
growth, we found little correlation between N~
and the PH, concentration in this doping range.

It is apparent from Fig. 2 that our bulk density
of states is totally different from those previous-
ly reported. "' The major differences are (1) a
maximum at midgap rather than a minimum, and

(2) a much lower density in our case (by three to
four orders of magnitude at E;, —0.4 eV). Balberg
and Carlson" have recently shown from conduc-
tance measurements (see Fig. 2) that the promi-
nent feature at E —0.4 eV in the field-effect den-
sity of states' is characteristic of the surface re-
gion. Current transient and conductance meas-
urements on our samples yield similar results,
but we have no evidence that such states exist in
the bulk. This strongly suggests that the report-
ed densities of states were largely associated
with the regions near the surface, in agreement
with previous indirect evidence for substantial
surface-state concentrations. "

In conclusion, we have measured for the first
time the spectral shape and density of gap states
in the bulk regions of n-type a-Si: H films. The
density of states does not seem to be intrinsic in
doped films with the extrapolated total density of
states deeper than 0.5 eV expected to be less than
10" cm ' in undoped films. Our results suggest
that the previous measurements of much larger
densities of states with a different spectral shape
must be associated with the regions near the sur-
face of the film.

We wish to acknowledge the valuable assistance
of A. J. Williams and A. M. Sergent in sample
preparation and fabrication. We wish to thank
J. C. Bean for helpful discussions and especially
V. Narayanamurti for his continued interest and
encouragement during the course of this work.
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