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Role of Substrate Symmetry in Nucleating Solid Helium

Y. Eckstein, J. Landau, S. G. Lipson, and Z. Olami
DePartment of Physics, Technion Is—rael Institute of Technology, Haifa, Israel

(Received 7 July 1980)

The continuous nucleation of bcc solid 3He from the liquid phase due to the presence of
a MgO substrate is detected. For superfluid 4He there is no evidence of continuous nu-
cleation of either the hcp or the bcc solid from the substrate. The experiment contrasts
the inQuence of the square lattice of MgO with the tri~~~lar lattice of a basal-plane
graphite substrate. The phenomenon of pore condensation for solid 3He is discussed.

PACS numbers: 67.80.Cx, 68.45.Da

In this paper we present new results which com-
pare the onset of solidification of 'He and 4He on
a magnesium oxide substrate, which has cubic
symmetry, with that already reported" for solid-
ification on Grafoil, which has a hexagonal sym-
metry. The Grafoil experiments had shown that
hcp 4He undergoes continuous solid nucleation
whereas, surprisingly, bce 'He did not nucleate
similarly. Since the van der Waals forces be-
tween the substrate and either isotope are iden-
tical, and this force is considered' to be respon-
sible for the superpressurization of the first few
helium layers on the substrate, we were led to
suggest that the substrate symmetry (hexagonal
graphite encouraging the hcp He} is the determin-
ing factor in the onset of solidification. To test
this conclusion we repeated the experiments with
a MgO substrate" which has a cubic symmetry.
For this substrate we observed uniform nuclea-
tion of the bcc 'He whereas 4He does not show any
signs of surface solidification in either hcp or
bce regions.

We should emphasize that the experiment on
Grafoil alone did not prove the relevance of sub-
strate symmetry. During the condensation of the
first layer of He on Grafoil, it is known from ad-
sorption studies' that initially an ordered state is
reached in which the helium atoms are registered
with the graphite lattice. Subsequently, as the
coverage is increased, a close-packed triangular
two-dimensional lattice is formed, with a spacing
incommensurate with the graphite lattice. It can
then be argued that this layer, which is formed
by either isotope, is the natural base for the con-
tinuing growth of hep 'He, whereas it would not
encourage the further growth of a bcc solid. The
present experiments disprove the universality of
this model, and demonstrate the importance of a
matching substrate symmetry. Further experi-
mental evidence from direct observation of the
growth of aligned 4He crystals on the Grafoil sub-
strate will also be presented to support the con-

elusion.
The experimental evidence for the onset of so-

lidification is deduced from the measurement of
equilibrium points along isopycnals in the vicin-
ity of the bulk melting curve. There appears a
substantial difference between the isopycnal and
the isochore for the bulk liquid when surface so-
lidification occurs, in the presence of a substrate
of sufficiently large surface area. The present
experiments used a 2.9-g MgO sample prepared
from compressed smoke at the University of
Washington. ' Its properties have been measured
by Dash etc~. 4 who showed that it produces kryp-
ton steplike adsorption isotherms and that it con-
sists of cubes of 0.1-p,m-average-size exposed
faces having square symmetry. This allows us to
estimate that our sample had an exposed surface
area of about 20 m', and an open volume of 4.3
cm' for the helium sample.

Experiments were performed in a 6.3-cm' cop-
per cell connected to a Straty-Adams type' pres-
sure transducer, into which the MgO sample was
transferred from an evacuated quartz ampule. To
promote thermal equilibrium, the interior of the
cell was crisscrossed by several copper wires.
During the 'He experiments we observed the ex-
istence of two distinct regions in the I', T plane
distinguished by widely differing thermal time
constants T. The approach to thermal equilibrium
was monitored by measuring the pressure in the
cell (the transducer allowed a resolution of better
than 10 ' atm} while the thick copper walls were
maintained at constant temperature by the dilution
refrigerator. Far from the bulk melting curve we
observed 7=0.5 h. When the pressure was within
0.1 atm of the melting curve we observed a much
slower approach to equilibrium, 7 =4 h. During
the 4He experiments the presence of the superflu-
id decreased the time constant to ~ ~30 sec. For
'He, we established a constant-volume system by
allowing a block of solid 'He to form in the filling
tube; for 4He samples, we actuated a needle valve
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surface it was no longer possible to obtain ori-
ented crystals. Using an optical cryostat we have
confirmed this, by observing the orientation of
'He crystals nucleated on clean Grafoil (Fig. 4).
For other materials, both Landau etal. " and
Balibar, Castaing, and Laroche" found that sin-
gle hcp crystals do not generally wet copper or
glass as well as the superfluid 'He does (contact
angle &90 ). It will be very interesting if clea, n

single crystals of MgO nucleate oriented bcc 'He

crystals.
In conclusion, we should reemphasize the anal-

ogy to the adsorption results from the vapor
phase. As in the case of hcp 'He on Grafoil we
now find that bcc 'He on MgO belongs to the class
I category of Dash" and Peierls. "

We acknowledge useful discussions with S. Alex-
ander, J. G. Dash, D. O. Edwards, M. Bretz,
and H. Wiechert. We thank Y. Lahav for his
technical assistance.
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Distance-Dependent Relaxation Shifts of Photoemission and Auger Energies
for Xe on Pd(001)
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Photoelectrons and Auger electrons from Xe in adsorbed multilayers of Xe on Pd(001)
as well as on spacer layers of Kr on Pd(001) exhibit well-resolved increases in kinetic
energy with decreasing distance from the surface {2-28 A), allowing a direct labeling of
the layers. These relaxation shifts for core-hole excitations (0.9-2.1 eV) and for Auger
excitations (3.3—6.6 eV) are well described by an image potential, where the position of
the image plane agrees within 0.2 A with local-density functional theory.

PACS numbers: 79.60.Qs

Core-level binding energies and Auger electron
energies for adsorbates are shifted relative to
their free-atom counterparts by initial-state po-
tential-energy effects and by hole-relaxation (po-
larization) effects. For physisorbed species on
metals, relaxation effects due to the screening of
excited hole states by the metal surface are of
central importance. Extensive theoretical work
on single-hole and two-hole relaxation effects has

been reported' ' but no clear-cut experimental
tests have been performed, in part because of
the difficulty of separating initial-state and final-
state effects. In this respect, rare-gas atoms
are especially attractive in that initial-state chem-
ical effects are expected to be minimal. To date,
however, rare-gas core-level binding energy
shifts have only been studied for atoms implanted
in metals' and semiconductors, ' for which initial-
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