San Diego.

 ${}^{1}P. J.$ Flory, *Principles of Polymer Chemistry* (Cornell University, Ithaca, 1953).

 2 A. V. Tobolsky and A. Eisenberg, J. Am. Chem. Soc. 82, 289 (1960).

 $\bar{3}$ A. V. Tobolsky and A. Eisenberg, J. Colloid Sci. 17, 49 (1962).

 A^4 A. V. Tobolsky and W. J. MacKnight, *Polymeric*

Sulfur and Related Polymers (Wiley, New York, 1965). ${}^{5}G.$ Gee, Trans. Faraday Soc. 48, 515 (1952).

 6 A. V. Tobolsky and A. Eisenberg, J. Am. Chem. Soc. 81, 780 (1959).

 7 H. E. Stanley, *Phase Transitions and Critical Pheno*mena (Clarendon, Oxford, 1971).

 ${}^{8}P$. G. DeGennes, Phys. Lett. 38A, 339 (1972).

 $9J.$ des Cloizeaux, J. Phys. (Paris) 36, 281 (1975).

 10 J. des Cloizeaux, J. Phys. (Paris), Lett. 41 , L151

(1980).

 ${}^{11}G$. Sarma, in appendix to paper by M. Daoud et d ., Macromolecules 8, 804 (1975).

¹²The constant λ accounts for differences in standard state and the inclusion in $K_{\mathbf{p}}$ in Ref. 6 of effects accounted for in $\Gamma(N_P, N_b, V)$.

 13 B. Widom, J. Chem. Phys. $43, 3898$ (1965).

 ^{14}P . Schofield, J. D. Litster, and J. T. Ho, Phys. Rev.

Lett. 23, 1098 (1969).

 15 J. Zinn-Justin and J. C. LeGuillou, Phys. Rev. B 21, 3976 (1980).

 16 J. C. Koh and W. Klement, J. Phys. Chem. 74 , 4280 (1970); J. C. Koh, Masters thesis, University of Cali-

fornia, Los Angeles, ¹⁹⁶⁷ (unpublished) .

 17 E. D. West, J. Am. Chem. Soc. 81 , 29 (1959).

- 18 F. Feher, G. P. Gorber, and H. D. Lutz, Z. Anorg. Allg. Chem. 382, 135 (1971).
- 19 F. Oosawa and S. Asakura, Thermodynamics of the Polymerization of Proteins (Academic, London, 1975).

η Decay and the Quark Structure of the ϵ

R. Aaron and H. Goldberg

Department of Physics, northeastern University, Boston, Massachusetts 02115 (Received 4 April 1980)

The decay rate for $\eta \rightarrow 3\pi$ is calculated with use of the u_3 tadpole piece of the quark Hamiltonian, but without assumptions of chiral perturbation theory. The calculation is performed within the framework of the bag model; however, the results are independent of bag parameters and depend only on (1) the light quark mass difference $|m_{u}-m_{d}|$ and (2) the quark structure of the ϵ (700). Comparison of the present calculated η decay rate with experiment shows that most theoretical estimates of $m_u - m_d$ imply a substantial four-quark component in the ε (700).

PACS numbers: 13.25.+ m, 12.40.Cc, 14.40.Ka, 14.80.Dq

A convincing (and successful) calculation of the amplitude for $\eta \rightarrow 3\pi$ remains an elusive goal of the particle theorist. The problems associated with past calculations are well known,¹ and we sketch them briefly: Let K' be the Hamiltonian density responsible for the decay, and define the (dimensionless) Feynman amplitude

$$
T(E_+, E_-, E_0) = \langle \pi^+ \pi^- \pi^0 | \mathcal{H} | \eta \rangle , \qquad (1)
$$

where the pion energies E_+ , E_- , and E_0 are defined in the c.m. system. In order to avoid the (experimentally unobserved) Sutherland suppression² of the amplitude at $E_0 = 0$, it was proposed³ to identify \mathcal{K}' with the u_3 tadpole⁴ associated with $\Delta I = \frac{1}{2}$ mass differences. In quark language,

$$
\mathcal{K}' = (m_u - m_d)(\overline{u}u - \overline{d}d)/2, \qquad (2)
$$

where m_u and m_d are the current quark masses. With \mathcal{K}' given by Eq. (2), one can show that T vanishes for $E_{\pm} = 0$ (i.e., $E_0 = m_\pi/2$), and hence

may be parametrized

$$
T = A \left(1 - 2E_0 / m_\eta\right),\tag{3}
$$

which gives a good representation of the experimental Dalitz plot. It then remained to evaluate $A = T(m_n/2, m_n/2, 0)$; experimentally, $A = 0.65$ $\pm 0.13.^5$

From this point, the calculational procedures become ambiguous. Contraction of Eq. (1) [using] (2)] with all three pions soft brings one to an illdefined point relative to the real Dalitz plot. The resulting amplitude is, in any case, small by a factor of $\sim \sqrt{3}$.¹ The case for chiral perturbation theory⁶ in the square of the η four-momentum is also difficult to maintain in the face of possibly rapid momentum dependences of the matrix element due to Kogut-Susskind ghosts.⁷

In this paper we present a calculation of the amplitude A which circumvents the above problems. Although it is performed within the framework of the Massachusetts Institute of Technology work of the massachusetts institute of Technolog.
(MIT) bag model,⁸ and utilizes the concept of pole dominance of $A = T(m_n/2, m_n/2, 0)$ by the ϵ (700),⁹ it will be seen that the answer does not depend on the bag parameters, and depends only very weakly on the relatively uncertain width of the ϵ , for m_{ϵ} in the range 650-800 MeV.

We proceed to outline our calculation. From Eqs. (1) and (2), upon contracting the π^0 , we obtain the standard result

$$
A = i\left[\left(m_u - m_d\right)/(2F_\pi)\right]\overline{A},
$$

\n
$$
\overline{A} = \left\langle \pi^+\pi^-\right|\overline{u}\gamma_5 u + \overline{d}\gamma_5 d\right|\eta\rangle_{E_+ = E_- = m_\eta/2},
$$
\n(4)

where A is defined by Eq. (2). As proposed by Jaffe, 10° we assume that there is a bound quark Jaffe,¹⁰ we assume that there is a bound quark state (the ϵ) at ~680 MeV. Given the proximity of m_n to this energy, one may hope to obtain a good approximation for \overline{A} by pole dominating with the

$$
|\,A\,|=\frac{|m_u-m_d|}{F_\pi}\left(\frac{32\pi}{3}\right)^{1/2}\left(\frac{\Gamma_\epsilon m_\epsilon^2 m_\eta}{(m_\epsilon^2-m_\eta^2)^2+\Gamma_\epsilon^2 m_\epsilon m_\eta}\,\right)^{1/2}\left(1-\frac{4m_\pi^2}{m_\epsilon^2}\,\right)^{-1/4} \mathfrak{M}_{\text{bag}}\,,
$$

where we have used the relation

$$
\frac{2}{3}\Gamma_{\epsilon} = \frac{\mathcal{E}\epsilon_{\pi} + \pi^{-2}}{16\pi m \epsilon} \left(1 - \frac{4m \pi^2}{m \epsilon^2}\right)^{1/2}.
$$
 (9)

The kinematic factor on the right-hand side of Eq. (8) is only weakly dependent on the ϵ parameters; e.g., for the bag value m_{ϵ} = 680 MeV, the factor shows less than a 5% variation as Γ_{ϵ} varies between 400 and 600 MeV. There is similar small variation with m_{ϵ} . For the bag values m_{ϵ} =680 MeV, and $\Gamma_{\epsilon} = 500 \pm 100$ MeV, we write

$$
A = \frac{|m_u - m_d|}{3 \text{ MeV}} (0.23 \pm 0.01) \mathfrak{M}_{\text{bag}} , \qquad (10)
$$

with

$$
\mathfrak{M}_{\text{bag}} = \sin\theta \mathfrak{M}_{\text{bag}}^{\text{(2)}} + \cos\theta \mathfrak{M}_{\text{bag}}^{\text{(4)}}.
$$
 (11)

The superscripts (2) and (4) and the angle θ in Eq. (11) refer to the quark content of the ϵ ; i.e.,

$$
|\,\bar{\epsilon}\rangle=\sin\theta\,|\,q\bar{q}\rangle+\cos\theta\,|\,q^2\bar{q}^2\rangle\,.
$$
 (12)

The first ket in (12) represents the standard p wave quark model picture of the ϵ and has been wave quark model picture of the ϵ and has been
described in the bag model.¹³ The $q^2\overline{q}^2$ structur has been proposed by Jaffe 10 as a more favorable assignment for the ϵ .

 $\mathfrak{M}_{\text{bag}}^{(4)}$ of Eq. (11) is evaluated in a straightforward, albeit tedious, calculation with use of the $q^2\overline{q}^2$ wave function for the ϵ given by Jaffe, and $|\eta\rangle = (u\overline{u} + d\overline{d} - 2s\overline{s})/\sqrt{6}$. For $m_u = m_d = 0$ and R_u

 ϵ . Thus we write¹¹

$$
\bar{A} \simeq \frac{g_{\epsilon_{\pi}+\pi^{-}}\langle \epsilon|\bar{u}\gamma_{5}u + \bar{d}\gamma_{5}d|\eta\rangle}{m_{\epsilon}^{2} - m_{\eta}^{2} - i\Gamma_{\epsilon}(m_{\epsilon}m_{\eta})^{1/2}}.
$$
\n(5)

Because of the large width of the ϵ , we use a symmetric form of the Breit-Wigner amplitude to minimize bias.

In the bag model we make the usual static replacement

$$
\overline{A} = \langle \epsilon | \overline{u} \gamma_5 u + \overline{d} \gamma_5 d | \eta \rangle + 2 \langle m \epsilon m \eta \rangle^{1/2} \mathfrak{M}_{\text{bag}} , \qquad (6)
$$

where

$$
\mathfrak{M}_{\text{bag}} = \langle \,\vec{\epsilon}\,|\int d^3x \big[\,\vec{u}\,(x)\gamma_5 u\,(x) + \vec{d}\,(x)\gamma_5 d\,(x)\,\big] |\,\vec{\eta}\,\rangle \tag{7}
$$

with $\langle \bar{\eta} | \bar{\eta} \rangle = \langle \bar{\xi} | \bar{\xi} \rangle = 1$, and $u(x)$ and $d(x)$ are operawith $\langle \bar{\eta} | \bar{\eta} \rangle$ = $\langle \bar{\epsilon} | \bar{\epsilon} \rangle$ =1, and $u(x)$ and $d(x)$ are oper
tors defined over cavity wave functions.¹² Note that $\mathfrak{M}_{\mathrm{bag}}$ is dimensionless, and hence for zeromass quarks and equal radii for $\ket{\xi}$ and $\ket{\tilde{\eta}}$, it will have no dependence on the bag parameters. Substituting (6) and (7) into (4), we find

$$
\frac{n_d|}{3}\left(\frac{32\pi}{3}\right)^{1/2}\left(\frac{\Gamma_\epsilon m_\epsilon^2 m_\eta}{(m_\epsilon^2 - m_\eta^2)^2 + \Gamma_\epsilon^2 m_\epsilon m_\eta}\right)^{1/2}\left(1 - \frac{4m_\pi^2}{m_\epsilon^2}\right)^{-1/4} \mathfrak{M}_{\text{bag}}\,,\tag{8}
$$

 $\sqrt{\frac{1}{1 - R_{\epsilon}} \sqrt{\frac{1}{1 - R_{\epsilon}}}}$ we obtain

$$
\mathfrak{M}_{\text{bag}}\xspace^{(4)} = 2\sqrt{2}(0.972\sqrt{\frac{6}{7}} + 0.233\sqrt{\frac{1}{7}})
$$

$$
\simeq 2\sqrt{2}. \tag{13}
$$

Furthermore, a standard $q\bar{q}$ model¹³ for the ϵ yields"

$$
\mathfrak{M}_{\text{bag}}^{(2)}=0.\tag{14}
$$

From Eqs. (10) - (14) , we see that in the approximation of ϵ saturation, the η does not decay unless the ϵ has a $q^2\overline{q}^2$ component. From (10), (11), and (13) the condition for agreement with experiment $(A = 0.65 \pm 0.13)$ is

 $|m_u-m_a|$ cos θ = 3.0 \pm 0.6 MeV (15)

and consistency is achieved for

$$
|m_u - m_d| \ge 2.4 \text{ MeV}.
$$
 (16)

Several values for $|m_u - m_d|$ (at a renormalization mass scale $\mu \sim 1$ GeV) have appeared in the tion mass scale $\mu \sim 1\,\,{\text{GeV}}$ have appeared in the
literature: (a) Pagels and Stokar,¹⁶ in conjunctio with the chiral perturbation theory analysis of with the chiral perturbation theory analysis of
Langacker and Pagels,¹⁷ obtain $m_u - m_d = -2.5$ \pm 2.4 MeV [implying from Eq. (15) that cos θ may equal 1, i.e., no $\bar{q}q$ component to the ϵ . (b) An analysis of $\rho-\omega^0$ mixing by Langacker¹⁸ yields $(m_a - m_u)/2m_s = 0.010 \pm 0.002$, which for $m_s = 150$ \pm 50 MeV gives $m_u - m_d = -(3.0 \pm 1.0)$ MeV. (c) Weinberg's analysis¹⁹ gives $m_u - m_d = (-3.3$

1753

MeV)/Z_m*, where $Z_{\pmb{m}}{}^*$ = $\langle\,\tilde{h}|\,\!\int\! \widetilde{s}\left(\chi\right) s\left(\chi\right) d^3\chi\, |\,\tilde{h}\rangle$ and \tilde{h} is a hadron state containing one strange quark (normalized to $\langle \tilde{h} | \tilde{h} \rangle = 1$). In the bag model Z_m^* ≈ 0.5 , and thus Weinberg obtains $m_{u}-m_{d}=-6.6$ MeV, implying [from (15)] that $\cos\theta = 0.45$. (d) Bag-model fits to electromagnetic mass differences²⁰ give $m_u - m_d$ in the range -2 to -5 MeV. All of these estimates are model dependent. Nevertheless, if we accept as brackets 2 ${\rm MeV}$ < $\vert m_u - m_d \vert$ < 5 MeV, we may conclude that agreement with experiment is achieved for 0.5 \leq cos $\theta \leq 1$.

To summarize, we have obtained a consistent picture of the decay $\eta \rightarrow 3\pi$ based on the $u₃$ tadpole, which has the following features: (1) The calculation does not involve the usual extrapolations in energy variables over a range $\sim m_n$. (2) On the assumption that the 2π final state in the amplitude \bar{A} [Eq. (4)] is saturated with the ϵ (700), we find that the decay does not proceed unless the ϵ has a sizable $q^2\bar{q}^2$ component. (3) The decay amplitude is linear in the current quark mass difference $|m_{\mu}-m_{d}|$, and the value of $|m_{\mu}-m_{d}|$ and the $q^2\overline{q}^2$ mixture in the ϵ are strongly correlated [Eq. (15)]. In particular, values of $|m_u$ $-m_{d}$ (renormalized at a mass scale $\sim m_{e}$) of less than 6 MeV imply a substantial $q^2\overline{q}^2$ component in the ϵ wave function. (4) Consistency of the present analysis with experiment places a lower bound of 2.4 MeV on the mass difference $|m_{u}-m_{d}|$. (5) The decay amplitude depends only very weakly on Γ_{ϵ} , the width of the ϵ , as long as $\Gamma_{\epsilon} \geq 300$ MeV. (6) Although the calculation was performed in the framework of the MIT bag model, the dimensionlessness of the relevant matrix element $\mathfrak{M}_{\text{base}}$ [Eq. (7)] makes the results insensitive to the bag parameters, as long as these produce the observed masses in a manner consistent with $R_{\epsilon} \sim R_{n}$.

This research was supported in part by the National Science Foundation.

 ${}^{3}S$. K. Bose and A. H. Zimmerman, Nuovo Cimento 43A, 1165 (1966).

 4 S. Coleman and S. L. Glashow, Phys. Rev. 134, B671 (1964).

D.J. Wallace, Nucl. Phys. B20, ²³ (1970).

 6 Langacker and Pagels, Ref. 5.

 7 J. Kogut and L. Susskind, Phys. Rev. D 11, 3594 (1975). See also Weinberg, Bef. 1. ^A possible way of avoiding this problem has been explored in a recent calculation of the ratio $\Gamma(\eta \rightarrow 3\pi)/\Gamma(\eta' \rightarrow \eta \pi \pi)$ by K. A. Milton, W. F. Palmer, and S. S. Pinsky, Ohio State University Report No. COO-1545-267 (to be published).

 8 A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D 9, 3471 (1974); T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskes, Phys. Rev. D 12, 2060 (1975).

 9^9 An earlier, phenomenological study of the s-wave final-state $\pi\pi$ interaction in $\eta \rightarrow 3\pi$ decay has been given by Y. T. Chin, J. Schechter, and Y. Ueda, Phys. Rev. 161, 1612 (1967).

 $\overline{{}^{10}R}$. L. Jaffe, Phys. Rev. D $\underline{15}$, 267, 281 (1977).

 $^{11}\rm{We}$ realize that a Breit-Wigner description of the ϵ is somewhat arbitrary, since the ϵ is presumably a pole only in the quark channel a "primitive," in the P matrix description of R. Jaffe and F. E. Low, Phys. Rev. 19, 2105 (1979)] and has an ambiguous characterization in the S matrix. Nevertheless, because a posteriori we find little dependence on Γ_{ϵ} , the use of Eq. (5) is probably not a substantial source of theoretical error.

¹²Our use of a bag-model description of the η , in spite of its pseudo-Goldstone character, is justified a posteriori by the success of the bag model in correctly obtaining the mass of the K mesons. The pion alone presents special problems due to its very small mass. For recent interesting attempts at bag-model descriptions of the pion, see J. Donoghue and K. Johnson, Phys. Bev. ^D 21, ¹⁹⁷⁵ (1980); T.J. Goldman and R. W. Haymaker, California Institute of Technology Report No. CALT-68-782 (to be published).

 13 T. A. De Grand and R. L. Jaffe, Ann. Phys. (N.Y.) 100, 425 (1976).

¹⁴The integrals involved are insensitive to small variations around $R_{\epsilon} = R_{\eta}$. It is interesting that the value of R_n obtained in the mixing model proposed for the η by De Grand $et \, al.$ (Ref. 8) is very close to the value of R_{ϵ} obtained by Jaffe (Ref. 10) for the $q^2\overline{q}^2$ model of the ϵ . Both are $\simeq 4.7 \text{ GeV}^{-1}$.

The vanishing of $\mathfrak{M}_{\text{bag}}^{(2)}$ can be traced to the spin flip implemented on the struck quark by the transitic operator $\overline{\mathbf{u}}\gamma_5\mathbf{u}+\overline{\mathbf{d}}\gamma_5\mathbf{d}$. For the static case $(\overline{\mathbf{P}}_0=\overline{\mathbf{P}}_6=0)$, the amplitude for this to occur (with the unstruck quark remaining unflipped) is zero, because of the spin- 0 nature of the η and ϵ . This result holds in any $q\bar{q}$ *model.* (If $\mathbb{U}_{\text{bag}}^{(4)}$ is not zero because $\overline{u}\gamma_5u+\overline{d}\gamma_5d$ acts as a pair creation. operator in this case.) We would like to thank Professor E. Golowich for correcting an earlier version of this work (where $\mathfrak{M}_{\text{bag}}^{(2)}$ was given as $<<$ $\mathfrak{M}_{\text{bag}}$ $^{(4)}$, but nonzero), and for discussion on this point.

 16 H. Pagels and S. Stokar, Rockefeller University Report No. COO-2232B-194 (to be published).

 ^{17}P . Langacker and H. Pagels, Phys. Rev. D 19, 2070 (1979).

 ^{18}P . Langacker, Phys. Rev. D 20, 2983 (1979).

¹See, for instance, S. Weinberg, Phys. Rev. D 11, 3583 (1975).

 2 D. G. Sutherland, Phys. Lett. $23, 384$ (1966); J. S. Bell and D. G. Sutherland, Nucl. Phys. B4, 315 (1968).

 5 See P. Langacker and H. Pagels, Phys. Rev. D 10 , 2904 (1974), and 19, 2070 (1979), for an analysis of the data based on the rate formula given by H. Osborn and

¹⁹S. Weinberg, in Festschrift for I. I. Rabi, edited by Lloyd Motz (New York Academy of Sciences, New York, 1977).

 20 N. G. Deshpande, D. A. Dicus, K. Johnson, and V. L. Teplitz, Phys. Hev. Lett. 37, 1305 (1976), and Phys. Hev. D 15, 1885 (1977).

Correlations and Specific Heat of the SU(2) Lattice Gauge Model

B. Lautrup^(a) and M. Nauenberg^(b) CERN, CH-1211 Geneva 23, Switzerland (Received 16 September 1980)

Monte Carlo calculations of the specific heat of the four-dimensional SU(2) lattice gauge model show a sharp peak where Creutz discovered a crossover in the value of the string tension. In this region is also found a rapid increase in the correlation length and a slowing down in the Monte Carlo convergence towards equilibrium.

PACS numbers: 11.10.Np, 05.50.+q

It is generally believed that the $SU(N)$ lattice gauge models in four dimensions do not exhibit phase transitions, giving a simple picture for the confinement of static quarks, in accordance with phase transitions, giving a simple picture for
confinement of static quarks, in accordance v
the Wilson criteria.^{1,2} Recently Creutz^{3,4} has given evidence in support of this conjecture by evaluating the string tension for SU(2) and SU(3) gauge models using Monte Carlo simulations on finite lattices, and finding a rapid crossover between the expected strong coupling and asymptotic

freedom limits. Smooth matching between these two domains had previously been discussed from strong coupling expansions of the β function.⁵ The relation between the lattice and the continuum scales has been obtained analytically by Hasenfratz and Hasenfratz⁶ in agreement with Creutz's numerical results. Other tests of quark confinement ideas by Monte Carlo calculations have been carried out by applying 't Hooft's twisted boundary conditions⁷ on $SU(2)$ lattice gauge models.⁸

FIG. 1. The SU(2) average plaquette energy $\langle E_p \rangle$ as a function of β for a lattice of size 4^4 . The curves labeled a and b are obtained from the strong and weak coupling expansions, Eqs. (2) and (3).