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The decay rate for Z 3n. is calculated with use of the u3 tadpole piece of the quark
Hamiltonian, but without assumptions of chiral perturbation theory. The calculation is
performed within the framework of the bag model; however, the results are independent
of bag parameters and depend only on (1) the light quark mass difference im„—m„j and

(2) the quark structure of the &(700). Comparison of the present calculated &) decay rate
with experiment shows that most theoretical. estimates of m„—m„ imply a substantial
four-quark component in the &(700).

PACS numbers: 13.25.+ m, 12.40.Cc, 14.40.Ka, 14.80.Dq

X' =(m„-me)(uu —dd)/2, (2)

where m„and m& are the current quark masses.
With JC' given by Eq. (2), one can show that T
vanishes for E, =0 (i.e. , E, =m „/2), and hence

1752

A convincing (and successful) calculation of the
amplitude for g - Sr remains an elusive goal of
the particle theorist. The problems associated
with past calculations are well known, ' and we
sketch them briefly: Let K' be the Hamiltonian
density responsible for the decay, and define the
(dimensionless) Feynman amplitude

T(z„z,z,}=(~'n-~'i x'i ti),

where the pion energies E„E,and E, are de-
fined in the c.m. system. In order to avoid the
(experimentally unobserved) Sutherland suppres-
sion' of the amplitude at E, =0, it was proposed'
to identify X' with the u, tadpole' associated with
&I =~ mass differences. In quark language,

may be parametrized

T =x(l —2zjm „),
which gives a good representation of the experi-
mental Dalitz plot. It then remained to evaluate
A=T(m „/2, nt . „/2, 0); experimentally, A =0.65
~ 0.13.'

From this point, the calculational procedures
become ambiguous. Contraction of Eq. (1) [using
(2)] with all three pions soft brings one to an ill-
defined point relative to the real Dalitz plot. The
resulting amplitude is, in any case, small by a
factor of -~3.' The case for chiral perturbation
theory' in the square of the g four-momentum is
also difficult to maintain in the face of possibly
rapid momentum dependences of the matrix ele-
ment due to Kogut-Susskind ghosts. '

In this paper we present a calculation of the
amplitude A which circumvents the above prob-
lems. Although it is performed within the frame-
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work of the Massachusetts Institute of Technology
(MIT) bag model, ' and utilizes the concept of pole
dominance of A =T(m„/2, m„/2, 0) by the e(700),'
it will be seen that the answer does not depend on
the bag parameters, and depends only very yeah
ly on the relatively uncertain width of the &, for
m, in the range 650-800 MeV.

We proceed to outline our calculation. From
Eqs. (1) and (2), upon contracting the ~', we ob-
tain the standard result

A =t[(m„-m„)/(2F„)]A,

A =(& &
I uysu + dy5d I 'g)@

where A is defined by Eq. (2). As proposed by
Jaffe,"we assume that there is a bound quark
state (the e) at -680 MeV. Given the proximity of
m „ to this energy, one may hope to obtain a good
approximation for A by pole dominating with the

Thus we write"

A- g. ,+,-&~luy, u+dy, dl g)
m, —m„- tr, (m, m„)'12 (5)

where

Kb~ =(e Ifd'x[u(x)y, u(x) + d(x)y, d(x)]lg)

with (Fjlq) =(Kl Z) =1, and u(x) and dg) are opera-
tors defined over cavity wave functions. " Note
that Kb& is dimensionless, and hence for zero-
mass quarks and equal radii for I Z) and lfL), it
will have no dependence on the bag parameters.
Substituting (6) and (7) into (4), we find

(7)

Because of the large width of the e, we use a sym-
metric form of the Breit-Wigner amplitude to
minimize bias.

In the bag model we make the usual static re-
placement

A=(eluy, u+dy, d I p)-2(m, m„)'"5Kb~, (6)

(8)

where we have used the relation

+-' 4m '2 I g~+„-
1

4m
3 16', m ~

A = " (0.23+ 0.01)SRb~,3 MeV
(1o)

with

The kinematic factor on the right-hand side of Eq.
(8) is only weakly dependent on the e parameters;
e.g. , for the bag value m, =680 MeV, the factor
shores less than a S~ip variation as I", varies be-
tseeen 400 and 600 Me V. There is similar small
variation with m, . For the bag values m, =680
MeV, and I', =500~100 MeV, we write

I =R, ,"we obtain

sn, "& =2'(0.972''-,' + 0.2334-,')
= 2'.

Furthermore, a standard qq' model" for the &

yields"

Kb@ =0.(&)

From Eqs. (10)-(14), we see that in the approx-
imation of 6 saturation, the g does not decay un-
Less the e has a q'q' component. From (10), (11),
and (13) the condition for agreement with experi-
ment (A =0.65+ 0.13) is

I m„-m, I cos9 =3.0~ 0.6 MeV

&b@= Sin(9%
bing

+ COSHbing (11

The superscripts (2) and (4) and the angle 8 in
Eq. (11) refer to the quark content of the &; i.e.,

and consistency is achieved for

Im„-m~ I) 2.4 MeV. (16)

I e& =sinel qq&+cosel q'q'&. (12)

The first ket in (12) represents the standard p
wave quark model picture of the & and has been
described in the bag model. " The q'q' structure
has been proposed by Jaffe" as a more favorable
assignment for the &.

IRb@ of Eq. (11) is evaluated in a straightfor-
ward, albeit tedious, calculation with use of the
q'q' wave function for the & given by Jaffe, and
lq) =(uu + dd —2ss)/+6. For m„=m~ =0 and R„

Several values for I m„-m„ I (at a renormaliza-
tion mass scale u -1 GeV) have appeared in the
literature: (a) Pagels and Stokar, " in conjunction
with the chiral perturbation theory analysis of
Langacker and Pagels, "obtain m„-m„=-2.5
+ 2.4 MeV [implying from Eq. (15) that cos8 may
equal 1, i.e., noqq component to the e]. (b) An
analysis of p-&' mixing by Langacker" yields
(m~ -m„)/2m, =0.010+ 0.002, which for m, =150
+ 50 MeV gives m„-m~ = —(3.0+ 1.0) MeV.
(c) Weinberg's analysis" gives m„-m~ = (-3.3
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MeV)/Z *, where Z * =(hoo fs(t)s(r)d'x~ h) and 0
is a hadron state containing one strange quark
(normalized to (h ~ h) =1). In the bag model Z *
= 0.5, and thus %'einberg obtains m„-m„=—6.6
MeV, implying [from (15)] that cos6=0.45.
(d) Bag-model fits to electromagnetic mass dif-
ferences" give m„-m„ in the range —2 to —5

MeV. All of these estimates are model depen-
dent. Nevertheless, if we accept as brackets 2

MeV&
~ m„-m~ )

& 5 MeV, we may conclude that
agreement with experiment is achieved for 0.5

cos& 1.
To summarize, we have obtained a consistent

picture of the decay g- 3& based on the u, tad-
pole, which has the following features: (1) The
calculation does not involve the usual extrapola-
tions in energy variables over a range -m „.
(2) On the assumption that the 2~ final state in the

amplitudes [Eil. (4)] is saturated with the ~(700),
we find that the decay does not proceed unless the
e has a sizable q'q' component. (3) The decay
amplitude is linear in the current quark mass dif-
ference l~„-m, [, and the value of [m„-m,

~

and the q'q' mixture in the & are strongly corre-
lated [Etl. (15)]. In particular, values of ~m.
-m~~ (renormalized at a mass scale -m, ) of
less than 6 MeV imply a substantial q q' compo-
nent in the e wave function. (4) Consistency of
the present analysis with experiment places a
lower bound of 2.4 MeV on the mass difference
~m„-m, ~. (5) The decay amplitude depends only
very weakly on I', , the width of the &, as long as
I', ~ 300 MeV. (6) Although the calculation was
performed in the framework of the MIT bag mod-
el, the dimensionlessness of the relevant matrix
element IIb& [Etl. (7)] makes the results insensi-
tive to the bag parameters, as long as these pro-
duce the observed masses in a manner consistent
with R, -R„.
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Monte Carlo calculations of the specific heat of the four-dimensional SU(2) lattice gauge
model show a sharp peak where Creutz discovered a crossover in the value of the string
tension. In this region is also found a rapid increase in the correlation length and a
slowing down in the Monte Carlo convergence towards equilibrium.

PACS numbers: 11.10.Np, 05.50.+q

It is generally believed that the SU(N) lattice
gauge models in four dimensions do not exhibit
phase transitions, giving a simple picture for the
confinement of static quarks, in accordance with
the Wilson criteria. " Recently Creutz" has
given evidence in support of this conjecture by
evaluating the string tension for SU(2) and SU(3)
gauge models using Monte Carlo simulations on
finite lattices, and finding a rapid crossover be-
tween the expected strong coupling and asymptotic

freedom limits. Smooth matching between these
two domains had previously been discussed from
strong coupling expansions of the P function. ' The
relation between the lattice and the continuum
scales has been obtained analytically by Hasen-
fratz and Hasenfratz' in agreement with Creutz's
numerical results. Other tests of quark confine-
ment ideas by Monte Carlo calculations have been
carried out by applying 't Hooft's twisted bounda-
ry conditions' on SU(2) lattice gauge models. '
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FIG. 1. The SU(2) average plaquette energy (@) as a function of p for a lattice of size 44.
a and 5 are obtained from the strong and weak coupling expansions, Eqs. (2) and (3).
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