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will no longer be equal to each other nor can they
be expressed simply in terms of these orbit ele-
ments. Fortunately in the case of the binary pul-
sar the time scale for these changes is of the or-
der of e ' times the period of the system. As a
consequence one can make use of the method of
multiple time scales to evaluate these integrals.

In this method one assumes that the orbit ele-
ments are functions of a "slow" time e't while
the other motion variables are functions of a
"fast" time t. In lowest order of approximation
one can then neglect the slow-time variation of
the orbit elements in evaluating the integrals
over Z, and Z, . The result is that they are again
in lowest order of approximation equal to the
Newtonian expressions for the energy and angular
momentum of the system. They differ slightly in
value from each other, however, because the or-
bit elements appearing in these expressions have
slightly different values on Z, and Z, . The differ-
ence between the two integrals can therefore be
expressed in terms of the rates of change of the
orbit elements and these in turn can be related
to the integrals over S in the balance equations
(3) and (4). In this way one obtains expressions
for the rates of change of the semimajor axis and
eccentricity of the Newtonian orbits that are
equal to the expressions (5.6) and 5.7) given by
Peters and used by Taylor in the analysis of his
observations.
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Equilibrium polymerization can be described by the n 0 limit of the n-vector model of
magnetism in a small magnetic field. Nonclassical critical effects are predicted. The
earlier theory of Tobolsky and Eisenberg is a mean-field approximation to the present
theory. An application is made to the polymerization in sulfur.
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A great variety of organic and inorganic com-
pounds can polymerize to form linear and non-
linear polymers. ' In many cases, polymerization

proceeds under conditions of equilibrium between
monomer and polymer, 2 and interesting transition
phenomena can occur. '
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One of the oldest and most studied examples of
equilibrium polymerization showing a well-de-
fined transition is the polymerization of liquid
sulfur. Sulfur melts at 115 'C to give a mobile
yellow liquid consisting primarily of S, rings.
Above about T, =159 C these rings polymerize to
form long chains, and the liquid becomes brown
in color and extremely viscous. The abruptness
of the onset of polymerization at 159 'C results in
anomalies in physical properties of sulfur remi-
niscent of a second-order or A transition. The
specific heat exhibits an abrupt rise close to T',

and then decreases less rapidly for» T,. The
weight fraction of polymer, which is nearly zero
below T„ increases rapidly for» T,. There is
a dramatic rise in the viscosity and average mo-
lecular weight within a few degrees of T,.

The polymerization transition in liquid sulfur
was first treated by Gee,' who used distinct de-
scriptions above and below T,. The first unified
theory, due to Tobolsky and Eisenberg, ' is based
on chemical equilibrium theory with only two
etiuilibrium constants, K~ =exp[(T&S~ —&H~)/AT]
and KJ =exp[(Tb8~ —AH~)/AT], where K, de-
scribes the initiation of the polymerization through
opening of S, rings and iCP describes the propaga-
tion reaction. If c~ is the initial concentration of
S, rings and cp the concentration of S, rings at
equilibrium, then the concentration of polymers,
c» and the concentration of monomers incorpo-
rated in polymers, c, are given in the Tobolsky-
Eisenberg (TE) theory by

c~ =K~cg(l -KI,CJ,

c =K~cg(1 -K~cg',

where c, satisfies the "equation of state"

Co+Cm =Co+Kgco/(1 -K~CO) =Coo,

If K,(T,) «1 the system exhibits a "transition. "
At low temperatures c and c~ are very small

cp cpp. As KP passes through KP cpp, the
quantities c and c~ abruptly start to increase;
the system polymerizes. The number average
chain length, P = c /c~, rises to a maximum val-
ue P~»-K, ' '- 10'-10'. The sharpness of the
transition depends upon the smallness of K,(T,).
Only in the limit K,(T,)-0 does the transition be-
come mathematically sharp. For sulfur, K,(T,)- 10 so the transition is very sharp and critical
effects are to be expected, as argued below.

In this Letter we present for the first time a
direct theoretical contact between equilibrium
polymerization and the theory of phase transi-

tions and critical phenomena. ' Equilibrium poly-
merization can be described by the n-0 limit of
the n-vector model of magnetism in the presence
of a very small magnetic field H. The resulting
model exhibits critical behavior characterized by
nonclassical critical exponents. Tobolsky and
Eisenberg's theory is shown to be a mean-field
approximation to the model. The n-0 vector mod-
el has been used previously' ' to describe the
statistics of long polymers in solution, but that
analogy suffers from a difficulty in treating poly-
dispersion. " In the case of equilibrium polymer-
ization, polydispersion effects are treated cor-
rectly.

Following Sarma, "consider the n-vector model
on a d = 3 dimensional lattice of volume V with
Hamiltonian

where the sum Q&;, &
extends over all distinct

nearest neighbor pairs (i,j) of spins, and where
5 is a classical vector of norm

and $ ' is its component parallel to the field H.
In the limit n-0 the partition function Z and ther-
modynamic potential f for this model can be writ-
ten"

~=e'"'= & (P)"'(&')" I'Ybp&py V)y (4)
NyNp

where p =J/kT and A = p, +/kT, with T the tem-
perature of the reference n-vector model, and
where I'(V„N„,V) is the number of ways to put
NP self-avoiding and mutually avoiding walks
(linear polymers with excluded volume) containing
a total of N, steps or bonds (bonds between mono-
mers) on a lattice of V/v, sites, with v, the vol-
ume per site. The sum includes single-site walks
with no bonds but excludes closed loops. If we
make the correspondence

P=K~ ', I'=K„ (5)
where A is an appropriate constant, "then Eq. (4)
represents the partition function of a system of
S, rings in equilibrium with polymers. Each lat-
tice site contains an S, "monomer, " either closed
or open. Each term in Eq. (4) consists of a set
of self-avoiding and mutually avoiding walks. A
walk containing x bonds corresponds to a polymer
containing x+1 monomers, and is weighted by a
factor K, for initial ring opening and by a factor
(K+ ')" for the x chain propagation steps The.
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"unoccupied" sites in each term of Eq. (4) contain
closed S, rings which act as a solvent for the
polymer. We shall suppose that 8, rings act like
a good solvent, leading to an effective repulsion
between open 8, monomers. The concentrations
c and c~defined above are related to the magnet-
ization density m =&f/sh and the configurational
energy density e =sf/&p through the equations

cp =pm',

cm cp =pe.

The equation of state G(m, h, P) =0 of the n 0-
vector model is needed to know how c~, c, and
P = c„/c~ vary as functions of T [through A~ and

K, by use of Eq. (5)]. Here we shall assume that
the n-0 vector model obeys scaling" when P-P,
and A-O, and we shall use for simplicity a linear
parametric model'4 and neglect at this stage
terms due to Goldstone modes when the coexis-
tence curve is approached. The parametric rep-
x esentation is

Z '" =I =a~'e(1-O')

1 -z, (T)/sc (T,) =T =r(1 -t'e2),

2c, /Z, "=m =m,r'e,
c —c =pe =pe r "8'.

From the Maxwell relation s e/&h =&m/& p it fol-
lows that

6 =P(5 —2)/yn and P,eo =~yamo.

The exponents n, P, y, 5, and & =PS are critical
exponents, defined in Ref. 7. They satisfy the
scaling relations a+2P+y =2 and P(0 —1) y.

The theory of Tobolsky and Eisenberg corre-
sponds to a mean-field approximation. The equa-
tion of state [Eq. (2)] can be rewritten in terms
of the phase transition variables in the vicinity of
z,'=z, (T,) =c -':

(m/2cg'+ (m/2cg~ = 0+ ~ ~,

where " indicates the presence of higher-order
terms. This corresponds to the parametric rep-
resentation (7) with the values a = 1, Io

= 2c,»
b'=2, and @=0, & =~3. To go beyond mean field,
including critical effects, we use Eq. (7) with cri-
tical exponents determined from field-theoretic
methods": n =0.236, L =1.46.

The vanishing of e in Eq. (7) for 8 =0 is re-
quired by the n-0 vector model. It results in
very diferent behavior for sulfur above and be-
low T,. Jn addition, there is a very narrow range
of temperatures about &, in which the rounding
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effects of the small field h =1K, are important.
jF'or Sulfur this range is

a T/T, =(gT, /se )K &'~'" =10 ' (10)
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FIG. 1. %eight fraction of polymeric sulfur. Squares
and circles are the data of Koh and Element (3 h, 60
min, respectively). Solid curve is the asymptotic
theory from Eq. (7). Dashed curves give the TE theory
with their original parameters (curve a) and with 4H~
somewhat larger (curve b) corresponding to curve b in.

Fig. 2.

or b. T=0.05 'K, which is smaller than the resolu-
tion with which experiments have been performed
to date.

The behavior of the number average chain
length, P =c /c~ =1+ [x(1-6 )] ~, is very much
like that predicted by Tobolsky and Eisenberg. It
varies as ~ ~ for T & T, and rises smoothly to a
maximum value proportional to K~ ' '. We have
used a = 1 and the values of ASz and &H~ given by
TE. Our curve for P(T) is essentially identical
with theirs.

The weight fraction of polymeric sulfur, C = c /
c~, has been measured recently by Koh and Ele-
ment~' and is reproduced in Fig. 1, along with re-
sults from the asymptotic scaling theory in Eq.
(V) (solid curve) and from. the TE theory (dashed
curves). Our predictions are the following:

z„&sc '. c -x,pc '-z, )-&~"&,

K =K ' 4-K ~' "~~'~
P P 1

zp)z~' c -(Kp-z~'. )' ".
Because K, is so small, 4 is essentially zero
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for T & T, and then increases with an exponent
1 —o.. Thus, in the K,-O limit, 4 rises linearly
with T in the TE theory (o. =0) but with infinite
slope at T, in the nonclassical theory. The latter
prediction seems to be in better agreement mith
the data of Koh and Element close to T,. (Experi-
mentally there is some insoluble sulfur even be-
low 2', which is believed to be due to closed-ring
polymers. )

The most striking predictions of the new theory
occur for the specific heat. The singular part of
the heat capacity (per mole of S,), C„can be cal-
culated from Etls. (4)-(7) as

40—

Q 20—
S

IO—

I I I I I I I I I I I I I I I I I

b

0~

8 8

BT&(k&) '
000

0
0

a 0-.

=~H, +(~H, -~H, )
- -'.

dT

The main theoretical prediction is the following:

Z &Z '. C, -(~H /RZ')%, 7-'-&,

Z =Z '. C, -(~H /RT')aZ, &""",

Kp &Kp'. C, (&Hp/RT)27' ".
(13)

For T & T, the small value of K~ leads to C, = 0 for
both the TE and the present theory. At T, there
is a large enhancement due to critical Quctua-
tions. Above T, our curve falls more rapidly
than that of TE. In Fig. 2 we present the data of
West»' for the heat capacity of I;iquid sulfur in the
vicinity of the transition together with curves ob-
tained from the asymptotic scaling theory in Eqs.
(7) and (12) (solid curve) and from the TE theory
(dashed curves). Corrections to scaling would be
expected to become important when 47 a 0.01 or
4T ~ 5', and addition of a correction to scaling
improves the agreement with experiment away
from T, of the solid curves in both Figs. 1 and 2.

The nonclassical theory seems to be in better
agreement with the large slope and curvature of
West's data above &,. However, it predicts a
larger heat capacity spike than observed. This
could be due to rounding by impurities or equilib-
ration problems very close to T,. More experi-
mental data are needed in the immediate vicinity
of the transition. Some more recent measure-
ments~' show higher peak values, a sharper spike,
and lower values for T & T„all in agreement with
our predictions. Clearly, however, further study
of the equation of state of the n-vector model is
also needed. The values of the remaining param-
eters used to produce Figs. 1 and 2 are &Hp/R
= 1360 'K and am o

= 1.45c~.

0
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FIG. 2. Singular part of the heat capacity, per mole
of S, in joules mole K . Circles are the data of
West (a constant background, equal to the value at
120'C, has been subtracted), the solid curve is the
asymptotic theory of Eqs. (7) and (12), and the dashed
curves are the results of the TE theory with their
original parameters (curve a), and with bHp/It in-
creased from 1595 to 1780'K to improve the heat capa-
city jump (curve 5).

One limitation of the treatment given here that
is shared by both the TE and Gee theories is that
large closed rings are not accounted for. It has
long been believed that the slow rise in heat ca-
pacity for T & T, and the small content of insoluble
sulfur below T, are due to these rings. It has
been argued that these rings only contribute a few
percent of the total sulfur. We have examined a
generalization of TE theory which includes rings
and find that it does produce a precurser in C,
but does not significantly affect the predictions
when» &,.

The details of the calculations leading to the re-
suIts given here will be presented elsewhere.
The same formalism can certainly be applied to
many other systems exhibiting equilibrium poly-
merization. " Treatments of polymerization and

phase transitions in liquid sulfur solutions and of
copolymerization mill be presented elsewhere.
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The decay rate for Z 3n. is calculated with use of the u3 tadpole piece of the quark
Hamiltonian, but without assumptions of chiral perturbation theory. The calculation is
performed within the framework of the bag model; however, the results are independent
of bag parameters and depend only on (1) the light quark mass difference im„—m„j and

(2) the quark structure of the &(700). Comparison of the present calculated &) decay rate
with experiment shows that most theoretical. estimates of m„—m„ imply a substantial
four-quark component in the &(700).
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X' =(m„-me)(uu —dd)/2, (2)

where m„and m& are the current quark masses.
With JC' given by Eq. (2), one can show that T
vanishes for E, =0 (i.e. , E, =m „/2), and hence
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A convincing (and successful) calculation of the
amplitude for g - Sr remains an elusive goal of
the particle theorist. The problems associated
with past calculations are well known, ' and we
sketch them briefly: Let K' be the Hamiltonian
density responsible for the decay, and define the
(dimensionless) Feynman amplitude

T(z„z,z,}=(~'n-~'i x'i ti),

where the pion energies E„E,and E, are de-
fined in the c.m. system. In order to avoid the
(experimentally unobserved) Sutherland suppres-
sion' of the amplitude at E, =0, it was proposed'
to identify X' with the u, tadpole' associated with
&I =~ mass differences. In quark language,

may be parametrized

T =x(l —2zjm „),
which gives a good representation of the experi-
mental Dalitz plot. It then remained to evaluate
A=T(m „/2, nt . „/2, 0); experimentally, A =0.65
~ 0.13.'

From this point, the calculational procedures
become ambiguous. Contraction of Eq. (1) [using
(2)] with all three pions soft brings one to an ill-
defined point relative to the real Dalitz plot. The
resulting amplitude is, in any case, small by a
factor of -~3.' The case for chiral perturbation
theory' in the square of the g four-momentum is
also difficult to maintain in the face of possibly
rapid momentum dependences of the matrix ele-
ment due to Kogut-Susskind ghosts. '

In this paper we present a calculation of the
amplitude A which circumvents the above prob-
lems. Although it is performed within the frame-


