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A new derivation of the quadrupole formulas and balance equations of general relativity
for gravitationally bound systems is given which overcomes objections raised to previous

derivations.
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The use of the so-called quadrupole formulas of
general relativity for the calculation of the rates
at which energy and angular momentum is radi-
ated by gravitationally bound systems such as the
binary pulsar PSR 1913+ 16 has been criticized by
a number of authors.! Furthermore, several of
these authors have derived expressions for these
rates that differ from the quadrupole expressions
by factors of the order of unity.? In addition the
derivations of energy and angular-momentum bal-
ance equations needed to calculate secular chang-
es in the orbit elements of such systems have
also been questioned.

Until recently there did not appear to be any
possibility of testing the predictions of the quad-
rupole formulas—they all gave loss rates when
applied to known astrophysical systems that were
far too small to be observable. The discovery of
PSR 1913 + 16 appears to make possible for the
first time a test of these predictions. Its orbital
period has been observed to be decreasing at the
rate of the order of 107!2 sec/sec. The most re-
cent observations?® give, in fact, a value for the
period change of (1.04 + 0.13) times the quadru-
pole prediction. If this period change is due en-
tirely to losses by gravitational radiation, then
this result is now sufficiently accurate to rule out
all predictions other than the quadrupole predic-
tion itself. It is therefore important to decide
which of these predictions is a valid consequence
of general relativity if one wishes to use the ob-
served period change to test this theory. In this
Letter I will outline a derivation of the quadru-
pole formulas and balance equations for gravita-
tionally bound systems which I believe is free
of the objections raised to previous such deriva-
tions.

The method we shall use to obtain an approxi-
mate expression for the period change of a binary
system makes use of the Landau-Lifshitz com-
plex* 6#” which satisfies, as a consequence of the
field equations of general relativity, the conser-
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vation law®
6+ ,=0. (1)

One method, used by Peters,® to derive the
quadrupole formula from Eq. (1) is to integrate it
over a t=f, hypersurface bounded by a sphere S
whose radius 7 is allowed to approach infinity.
When this is done and use is made of Gauss’s
theorem one obtains

d/dt) f,0%°dv+ [ 6% n,ds=0. (2)

The problem with using this equation as it stands
is that the fields appearing in 6*¥ are retarded
fields which depend on the retarded coordinates
of the sources.

In order to evaluate the integrals appearing in

(2) it is necessary to expand the retarded quanti-

ties in a Taylor series in terms of their instan-
taneous values at the time £,. Since the effective
sources which come from the nonlinear terms in
the field equations of general relativity are non-
local, such a procedure results in a series in
which the first few terms are finite but in which
all the subsequent terms diverge. This is not to
say that the integrals in Eq. (2) diverge—only
that such an expansion leads to divergent results.

One can avoid these divergent terms by inte-
grating Eq. (1) over a four-volume bounded by
three hypersurfaces Z,, Z,, and S. The hyper-
surface S is defined by the condition =R in the
limit R —~%. One can show that such a choice for
S is convenient but not necessary; any spacelike
hypersurface that is sufficiently far removed from
the sources will yield the same results. The hy-
persurfaces Z, and Z, are chosen to coincide in
the wave zone with two future-directed null cones
and only in the near zone are they taken to be the
hypersurfaces ¢=¢ and {={,. Performing the in-
dicated integration and using Gauss’s theorem
leads to the balance equations

Jz, 61 ao, —lee“" do, + [{6" da, =0. (3)
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The virtue of this procedure is that all of the in-
tegrals appearing in Eq. (3) can, in first approxi-
mation, be related to the values of the coordin-
ates of the sources for times lying between ¢, and
t, without the appearance of divergent integrals.
In what follows I shall refer to Eq. (3) with u=0
as the energy balance equation. In a similar man-
ner one can obtain an angular-momentum balance
equation

Sy M4 do, - [; M do,+ [Mido, =0,  (4)

where

M= 4167V = 490§ j=1,2, 3. (5)

To proceed with the derivation we must obtain
an approximate expression for the fields appear-
ing in the integrals over S, Z,, and Z, in Egs. (3)
and (4) in terms of the coordinates of the sources.
These expressions are obtained by solving the
field equations of general relativity by some ap-
proximate means. One approximate method that
has been used in the past for this purpose involves
linearizing the field equations and then solving the
resulting linear equations by imposing deDonder
coordinate conditions and an outgoing radiation
condition. The resulting solution is a standard
retarded integral of the stress-energy-momen-
tum tensor T*? of the sources. The rationale for
this procedure is that the fields are weak and
hence the nonlinear terms in the field equations
can be neglected in lowest order. The resulting
retarded integrals of TH¥ are then evaluated in
terms of a sum of integrals over its instantaneous
values which in turn are evaluated by means of a
series of integrations by parts.”

As long as one is dealing with nongravitationally
bound sources one can probably justify this pro-
cedure although Madore® has argued that even in
this case the linearized solution is not an approx-
imation to any exact solution of the field equa-
tions. The real difficulty arises, however, when
one considers gravitationally bound sources such
as a double-star system. In this case the gravi-
tational stresses arising from the nonlinear terms
in the field equations are of the same order of
magnitude as the mechanical stresses (recall the
virial theorem) and so cannot be neglected in the
field equations even in the lowest order of approx-
imation. As a consequence the procedure out-
lined above for obtaining the gravitational field in
terms of the source coordinates again leads to
divergent terms in higher orders of the approxi-
mation. Furthermore the neglect of surface
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terms that arise from integrations by parts in the
finite terms must also be justified anew.

One of the main sources of these difficulties in
the past has been the use of regular perturbation
theory in which one expands the gravitational
field in a power series in some small parameter;
often the difficulties are compounded by taking a
dimensional quantity such as 1/c in the so-called
slow-motion approximation to be the parameter.
It is well known® that the use of regular perturba-
tion methods often leads to nonuniformities and
singularities that are not intrinsic to the problem
but rather are an artifact of these methods. For-
tunately perturbation methods have been devel-
oped that avoid these difficulties. Burke!® was
one of the first ones to recognize the need for
such so-called singular perturbation methods in
general relativity with his use of the method of
matched asymptotic expansions. In this work I
have found it necessary to make use not only
of this method but also Lighthill’s method of
stretched coordinates and the method of multiple
time scales.

The method of matching is required whenever
a small parameter multiplies the highest deriva-
tive in a differential equation as it does for slow-
ly moving systems in general relativity. In this
case the small parameter, which we designate by
€, is the light travel time across the system di-
vided by its period or, what is the same thing,
the size of the system divided by the wavelength
of the radiation emitted by it. In the case of the
binary pulsar PSR 1319+ 16 € has the value 6.5
x 1074,

To apply the method of matching one recognizes
two regions, an inner or near zone and an outer
or wave zone. One solves the field equations in
these two zones by some approximate means and
then matches the inner expansion of the outer so-
lution to the outer expansion of the inner solution
to determine the arbitrary functions appearing in
the two solutions. In both zones one uses a time
coordinate £* = e, where ¢ is measured in units
of the light travel time across the system. In ad-
dition one uses in the outer zone a radial coordin-
ate 7* = e, where 7 is measured in units of the
size of the system. In our application of this
method we take, in both zones, the basic field
variables to be the deviations y** of the metric
density (-g)"?g "’ from a Minkowsky metric n*?
=diag(l, -1, -1, = 1), i.e.,

L (6)
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We further assume that, in the outer zone, y*¥
depends on {* through its dependence on u* = €u,
where u is the future-directed null coordinate and
satisfies the equation

(-&)°g"u u,=0. (M

The use of the null coordinate « as described
here is required to avoid the appearance of non-
uniformities that would otherwise arise in the out-
er solution in higher orders of approximation as
In7* factors.'’ Since y*” is itself to be deter-
mined by an approximation procedure it follows
that # must also be so determined. This use of
u as an effective independent variable is in es-
sence the method of strained coordinates.

In order to solve the field equations of general
relativity it is necessary to impose coordinate
conditions on the y#?, Because of the simplifica-
tions their use entails, it has been customary to
employ the so-called deDonder conditions y** ,
=0 for this purpose. However, as Fock!? first
pointed out, these conditions also lead to nonuni-
formities in the outer solution through the appear-
ance of additional In7* factors. I have found
that we can avoid these nonuniformities and still
achieve significant simplification of the field
equations if we require, instead of the deDonder
conditions,

5/””,1/=_%7./0{B ';/otB -),lwu.w ) (8)
where the “dot” denotes differentiation with re-
spect to #. Fortunately, to the order of accuracy
needed to determine orbit-element changes these
conditions reduce to the deDonder conditions.

In addition to coordinate conditions it is also
necessary to impose some kind of a radiation con-
dition on solutions of the outer problem. For this
purpose we shall require that in the far wave

zone, where 7*>>1, y* can be approximated by
an asymptotic series in inverse powers of 7*:

YE (%) Ty H (uk, 1), (9)
m=1

where n is an outward radial unit vector. We also
require that in this zone the coordinate ¢* can
also be approximated by an asymptotic series of
the form

X ~u* +x + b lnv* + 25 (%)™ b(u*, r-f),
m=1

(10)

where ;b is a constant. [Unless ;b is a constant
the expansions (9) and (10) will not satisfy the

field equations.] For spatially compact sources
such as we are dealing with we impose two con-

ditions on the coefficients appearing in the expan-
sions (9) and (10). To eliminate the contribution
of source free waves to y"’ we require that these
coefficients tend to zero if the source strength
tends to zero. To eliminate noncausal solutions
we require that these coefficients be independent
of # in the space-time region u <u, if the source
is stationary in this region.

When use is made of the above conditions and
when the expansions (9) and (10) are inserted into
the field equations, it is found that all of the co-
efficients appearing in these expansions are de-
termined in terms of the one set of coefficients
1v*Y which appear in the expansion (9) and a num-
ber of constants of integration. It is further
found that when the surface S is allowed to ap-
proach future null infinity in Eqs. (3) and (4) the
integrands of the integrals over S are given as a
sum of terms which are quadratic in the ,7*/ and
.

The last steps in the derivation involve the de-
termination of ;y*” in terms of the source vari-
ables. For this purpose one uses the method of
matched asymptotic expansions with the matching
proceeding along the lines of Burke’s derivation.
The only essential difference is that the functions
F, that appear in Burke’s lowest-order (in €) out-
er solutions are now functions of »* rather than
t* — #*, The net result is that in lowest order
.¥¥ is given by

=204 (u)+0(€?),

where @%/ is the reduced quadrupole moment giv-
en by

(11)

Q¥ (t)=Jolt, S x'x’ ~§ 7201} x, (12)
where p(t, X ) is the mass density of the source.
When these expressions for 9%/ are substituted
into the integrals over S in the balance equations
one obtains the standard quadrupole results for
the rates of energy and angular momentum loss
given, for example, in Misner, Thorne, and
Wheeler.'?

The final step in the derivation involves the
evaluation of the integrals over the two hyper-
surfaces Z, and X, in the balance equations. If
the system were not radiating these two integrals
would be equal to each other and, in lowest ap-
proximation, to the Newtonian expressions for
the energy and angular momentum of the system.
However, because the system is radiating, the
orbit elements will in general change in time with
the consequence that the integrals over X2, and Z,
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will no longer be equal to each other nor can they
be expressed simply in terms of these orbit ele-
ments. Fortunately in the case of the binary pul-
sar the time scale for these changes is of the or-
der of €7° times the period of the system. As a
consequence one can make use of the method of
multiple time scales to evaluate these integrals.

In this method one assumes that the orbit ele-
ments are functions of a “slow” time €°¢ while
the other motion variables are functions of a
“fast” time £. In lowest order of approximation
one can then neglect the slow-time variation of
the orbit elements in evaluating the integrals
over Z, and Z,. The result is that they are again
in lowest order of approximation equal to the
Newtonian expressions for the energy and angular
momentum of the system. They differ slightly in
value from each other, however, because the or-
bit elements appearing in these expressions have
slightly different values on Z, and Z,. The differ-
ence between the two integrals can therefore be
expressed in terms of the rates of change of the
orbit elements and these in turn can be related
to the integrals over S in the balance equations
(3) and (4). In this way one obtains expressions
for the rates of change of the semimajor axis and
eccentricity of the Newtonian orbits that are
equal to the expressions (5.6) and 5.7) given by
Peters and used by Taylor in the analysis of his
observations.
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Equilibrium polymerization can be described by the » =0 limit of the z-vector mcdel of
magnetism in a small magnetic field. Nonclassical critical effects are predicted. The
earlier theory of Tobolsky and Eisenberg is a mean-field approximation to the present
theory. An application is made to the polymerization in sulfur.
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A great variety of organic and inorganic com-
pounds can polymerize to form linear and non-
linear polymers.! In many cases, polymerization
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proceeds under conditions of equilibrium between
monomer and polymer,? and interesting transition
phenomena can occur.®
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