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Sharp Metal-Insulator Transition in a Random Solid

T. F. Rosenbaum, ' K. Andres, G. A. Thomas, and R. N. Bhatt
Bell Laboratories, Murray Hill, ¹I Jersey 07974

(Received 30 June 1980)

Zero-temperature metallic conductivities have been measured above and below Mott's
minimum value o~j„in bulk crystals of P-doped Si. Conductivities below O~jp increase by
over 103 as the density is raised by less than 1"/o, and do not rule out a discontinuous
transition. However, over a wider density range the data can be fitted with a scaling
form with a characteristic length that tends to diverge with the same exponent in the
metal and insulator.

PACS numbers: 71.30.+ h, 71.50.+ t, 72.20.Fr

In 1972, Mott' proposed the existence of a finite
minimum conductivity a';„atzero temperature
and frequency in a metallic three-dimensional
random system. The idea was based on the Ioffe-
Regel criterion' that for metallic behavior the
electron's mean free path must exceed its wave-
length, and on Anderson's prediction' that, for a
certain value of the disorder, states become
localized. The value of o is given by a constant
times 8'/k divided by the interelectronic spacing
at the metal-insulator transition. Rather than
this fixed spacing, scaling theories of localiza-
tion' ' have proposed that a variable length $ is
the only pertinent scale near the transition. As
the density n decreases to the critical value n„$
diverges and reduces the zero-T conductivity o(0)
continuously to zero. For a true critical point at
n„the localization length in the insulator $~ has
the same critical exponent as $.

We have investigated o(0) by measuring the low-
electric-field (Ohmic) conductivity of uncompen-
sated Si:P at a series of donor densities and at
temperatures down to 1 mK. We have compared
our results with the above two descriptions of the
transition. The n dependence of 0'(0) is so sharp
that we cannot rule out a discontinuity at Mott's
estimated 0 ~, if there is rounding by -1% density
inhomogeneities. Alternatively we can fit the
rise in o'(0) above 0' ~ (i.e. , for n/n, -1& 3%) by a
critical form consistent with a continuous transi-
tion. In this region, where we believe inhomo-
geneities to be unimportant, we find a symmetry
between the density dependence of 0'(0) and that of
the dielectric susceptibility in the insulating
state, ' indicating that these quantities can be
described by divergent lengths with the same ex-
ponent.

Previous experiments on doped semiconductors
have been consistent' with a 0;„,but they have
used neither very low T nor closely spaced sample
densities. The extensive early work of Fritzsche'

presents conductivity as a function of donor den-
sity for Ge:Sb and Ge:Ga for T down to 2. 5 K.
Allen and Adkins' measured samples of compen-
sated germanium down to 200 mK, or kBT/Ez
-10 ', where El is the isolated impurity ionization
energy. In comparison, our measurements on
Si:p utilize kBT/E, -2&&10 ', but our results at
higher T are consistent with previous work.
Yamanouchi, Mizuguchi, and Sasaki" have also
investigated Si:P at low T, but with emphasis on
samples which had a high density of surface dis-
locations. ""

We have made four-probe resistance measure-
ments as a function of T using a lock-in technique
and frequencies low enough (-10 Hz) for frequency
independence and phase coherence of voltage and
current. Wires of Au:Sn were spot welded to a
freshly etched sample surface to make contacts
whose resistances were less than 10 ' the input
impedance of the lock-in amplifier and at worst
of the order of the sample resistance at any T.
The contacts were arranged linearly with an
average length between voltage probes of 1 mm
along an average cross-sectional area of 0.8
& 0.5 mm'. Resistance measurements with mov-
able probes indicated homogeneity in n over a
length scale of the order of this sample size.
Current flow homogeneity was tested by unnesting
the voltage and current leads and observing the
noise-limited check voltages (10 ' of the nested
voltage. " Temperatures down to 1 mK were
reached' with use of a dilution refrigerator and
adiabatic demagnetization of PrNi, . The samples
were thermally attached to a copper cold finger
through a t»n layer of Apiezon grease. Input
power was confined to & 10 "W for all samples,
and neither heating of the Si crystal lattice nor
thermal hysteresis was observed. Crystals of
Si:P were obtained from commercial quality
Czolchralski growth procedures. The far-infrared
absorption of these samples can be described by
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which can be written

o (0) = C~e'/5], (3)

where C~ is a constant and the scale length near
n, has the critical form

( =$,[(n/n, )-1] '. (4)

Models of metal inclusions in a dielectric medi-
um" as well as classical band and site percola-
tion theories also give the form of Eq. (2) but
with g = 1.6, inconsistent with our results. Non-
power law forms, proposed" for quantum local-
ization, "also do not fit our data.

We have tried to evaluate empirically the region
in which precursive behavior becomes important
by comparing our results with a theoretical cal-
culation of normal metallic behavior. This calcu-
lation of the zero-T conductivity a~ considers a
Fermi gas of electrons distributed in the six con-
duction band valleys and scattered by the ionized
impurities. The calculation excludes intervalley
and multiple scattering, and is done with use of
the Born approximation and Thomas-Fermi
screening, under the assumption, because of the
large mass anisotropy, that each electron is ef-
fectively screened by electrons in only two

FIG 3. Log-log plot of a(0)/o'|n;„(solid circles, left
scale) and the dielectric susceptibility 4n. p in normalized
form (4n ~, /n) from Ref. 7 (open circles, right
scale) vs In/n, —ll. The solid line determines the ex-
ponent v=0.55+ 0.05. In the inset, the deviation from a
simple screening calculation (Ref. 21) appropriate for
n»n, is shown on linear axes in comparison with our
values of 0(0) (solid circles) and some from Ref. 10
(crosse s) .

valleys —its own and the coaxial valley. The cal-
culation, "illustrated by the dashed line in Fig. 3,
is expected to be valid for n»n„but below where
intervalley and multiple scattering become im-
portant, to a level -20-30/c.

The deviation of the data from the dashed curve
ln Fig. 3 is large for tl/s —1 & 1~ yielding a pre-
cursive region where $ )$,. We have used this
region, shown in the main part of Fig. 3, for fit-
ting with Eq. (2) and for evaluating the parameters
in Eqs. (3) and (4). Current analyses' ' of the
scaling theory give v & 1, and a conductivity scale
0,=0~„.In contrast, we find v= /=0. 55, and 0,
= 13' .„-0.6e'/Kn,

Our fit to o(0) indicates a symmetry of the ex-
ponent in the metal with that observed previously'
in the dielectric susceptibility X in the insulator.
Within the scaling approach, ''

X ccn$~' and so
the divergence of $~ below n, should be measured
by ()(/n)' '. We have plotted some of the results
for X as the open circles in Fig. 3 to illustrate
that the same exponent describes both $ above n,
and g~ below. For both data sets, n, was fitted
by 3.74&10" cm ', with absolute uncertainty

0.2&&yp" cm '.
The current localization models of scaling re-

strict their region of applicability to o(0) &a ~i„or
n/n, —1&1%, where our limits on density accura-
cy and homogeneity do not rule them out. Within
this same narrow density region Mott's 0;„re-
mains possibly a true minimum, although we
measure metallic v(0) values down to 10 'v

However, the observed symmetry of the diver-
gent lengths and the measured characteristic con-
ductivity support a general scaling description of
the precursive behavior for n/n, —1&1 near the
metal-insulator transition in a random, three-
dimensional system.
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Four-Particle Radiative Transitions of Biexcitons and Multiple Bound Excitons in Si
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In this paper the observation of sharp and very weak emission lines in phosphorous-
doped silicon near twice the band-gap energy is reported. The line with the highest en-
ergy can be attributed to the total radiative annihilation of a free biexciton. The other
three lines originate from the decay of two electron-hole pairs in a multiple bound ex-
citon complex of two, three, and four excitons.

PACS numbers: 71.35.+ z, 78.55.Ds

In recent years there has been a large number
of publications dealing with series of sharp exci-
tonic emission lines connected with shallow im-
purities in the semiconductors with indirect band
structure Si,' Ge, ' SiC,' and GaP at low tempera-
tures. Originally the lines have been attributed
to the radiative decay of multiple bound excitons
(MBE). A more detailed model, called the "shell
model, " has been proposed by Kirczenovr" and
supported experimentally mainly by Thewalt. '
After considerable controversy it is now general-
ly accepted that the shell model adequately de-
scribes most of the experimental properties of
the MBE's.' Nevertheless, no direct proof of the
many-particle nature has been given so far. As
a direct proof, in this paper the observation of

emission lines at about twice the band-gap ener-
gy is reported for the first time. They are as-
cribed to the simultaneous decay of two excitons
bound in a multiple exciton complex.

Some years age, Betzler, Weller, and Conradt
observed a green emission from highly excited
silicon at room and liquid-nitrogen' as well as at
liquid-helium temperatures. ' The broad emission
band which appears at low temperature was ex-
plained by the simultaneous radiative recombina-
tion of two electrons and two holes within the
electron-hole droplets (EHD) ~

If MBE's really exist, analogous transitions
should lead to sharp emission lines near 2E,. In
order to estimate the expected luminescence in-
tensity, one can compare the transition probabil-
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