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Resonant Optical Energy Transfer in Ruby
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Measurements are reported of resonant nonradiative energy transfer in the R line of
ruby at 5 K using a fast Stark shifting technique. The transfer rate for 0.8% ruby is found
to be slow, ~ 1 msec™!, contrary to the much more rapid rates proposed earlier by sev-
eral workers but in fair agreement with the results of Heber. Implications of the results
for the occurrence of an Anderson transition in ruby are discussed.

PACS numbers: 78.50.Ec, 42.65.Gv

Starting with the pioneering work of Imbusch?
in 1967, mechanisms of optical energy transfer
in ruby have received much theoretical®>'® and
experimental*”® attention. Recently, high-resolu-
tion (1.8 GHz) fluorescence line narrowing (FLN)
techniques” have given®® quantitative data on non-
resonant phonon-assisted energy transfer between
single ions. Also grating techniques® have given
upper bounds® '! on the transfer rate, P, suggest-
ing'! that P may be less than 1.7 msec™! for 0.25%
ruby. Until now, no direct measurements of reso-
nant transfer have been made and various esti-
mates have been the subject of much controversy,
with some groups (Refs. 1, 3, 5, 6, and 8) favor-
ing fast transfer (102-10* msec™?!) and with other
groups* 2 concluding that the transfer is slow (<
4 msec™'). As emphasized by Selzer et al.,’ the
main observation favoring fast transfer is the re-
duction of R, lifetime at Cr concentrations above
about 0.4%. Other indirect evidence cited for fast
transfer is the observation of strictly exponential
decays™® and the supralinear rise of N line in-
tensity with increasing Cr concentration.! In
this Letter, we describe a direct, high-resolution
(40 MHz) measurement of nonradiative resonant
transfer in concentrated ruby and find it to be
slow.

The technique’® used to measure resonant trans-
fer relies on fast Stark shifting of laser-excited
ions in and out of resonance with unexcited ions.
The operation time sequence is shown in the in-
set of Fig. 1. A cw single-frequency dye laser
beam (1 MHz linewidth) which is resonant (within
+100 MHz of line center) with the ‘A,(+3) -~ E
transition in ruby is switched on by an acousto-
optic modulator for 0.8 msec and focused onto
the sample. During this time, a voltage exists
across the sample producing a pseudo Stark split-
ting of 25=1 GHz. About 100 usec after the laser
pulse, the Stark voltage is reduced to zero for a
contact time 7, allowing frequency packets initial-
ly excited at the laser frequency v, and unexcited
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ones at v, +2S to come to a common frequency at
v, +S. After 7., the Stark voltage is reinstated
and transfer is observed by spectral analysis of
the FLN signal. The presence of transfer is indi-
cated by the appearance of FLN lines at v, +2S
centered about the directly excited line at v, as
shown in Fig. 1. A boxcar was used to measure
the ratio of the peaks vs 7, and results for var-
ious Cr concentrations are shown in Fig. 2.

All measurements were done at sample tem-
peratures of ~5 K and in zero magnetic field.
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FIG. 1. Fluorescence line narrowing signal showing
transfer lines at vy + 2S and directly excited line at
the laser frequency vy, in 0.37-wt.% Cr,0; ruby at 5 K.
Inset shows measurement time sequence where the
laser pulse length is 7, = 0.8 msec, followed by a Stark
pulse of length 7., and finally the boxcar gate of 2 msec
length.
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FIG. 2. Experimental variation of the transfer ratio
(sum of the two transfer peaks divided by central peak)
vs contact time for various Cr concentrations.

(At this temperature, the nonresonant phonon-
assisted transfer rate® is <0.3 msec™! for con-
centrations up to 1%.) The laser power incident
on the crystal was 10 mW focused along the c,
axis, close to the observation surface, to a diam-
eter 2a=0.1 mm. The fluorescence was detected
at right angles to the ¢, axis and analyzed by a
plane Fabry-Perot interferometer (Burleigh
Model RC110; free spectral range, 7.6 GHz;
finesse, 200). A cooled RCA C31034 photomulti-
plier followed by a PAR Model 115 preamplifier
and 162 boxcar was used for signal detection.

The data in Fig. 2 indicate that the rescnant
transfer occurs in two stages, in particular for
the 0.05 and 0.1% samples. There is a fast trans-
fer involving a few percent of the ions in the first
few hundred microseconds followed by a slower
transfer over several milliseconds. We interpret
the former to be a nonradiative process and the
latter a radiative process. With use of a simple
model of radiative transfer described below, the
radiative contribution was deconvoluted from the
curves of Fig, 2 to give the nonradiative transfer
data shown in Fig. 3.

To describe the radiative transfer, consider an
infinitely long cylinder of radius » =a containing
a density N ,,° of laser-excited donor ions at a
time #=0 which are radiatively decaying at a rate
v,. Integration over the cylinder shows that the
photon intensity increases from P,(¢=0) = 3aN, %y,
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FIG. 3. Comparison of theoretical and experimental
variation of the nonradiative transfer ratio (see text)
vs contact time. (a) 0.1% ruby, theoretical parameters
A=5.6%, B=5.5msec™!; (b) 0.8% ruby, theoretical
parameters A, = 3.0%, 8; = 5.5 msec™!; A, = 13.0%,
B,=0.8 msec™!.

at r=a to P,=v2 P, at »=0. For simplicity, we
assume a uniform photon intensity, inside the
cylinder, of P,. The time dependence of P, is

P,(t) = 3aNp v, exp(~y, 1), (1)

where v, is the inverse lifetime determined by
nonradiative and radiative decay and energy trans-
fer. For our excitation geometry, decay time
measurements gave y,=y,=(4 msec) '=y to with-
in 20% for all samples. Assume that at t=0, a
density N , of ground-state acceptor ions is
switched into resonance with the donor ions. The
time dependence of N 4, is given by

dNAe/dt:’UPa(t)NA"YNAev (2)

where we assume that the number of excited ions
N 4, <N, Solving (1) and (2) gives for the time
dependence of the ratio of acceptor to donor fluo-
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rescence,
R:29=N 4, /N p.= aayt /4, (3)

where 20N ,= @, the absorption coefficient. This
analysis predicts a linear rise of R,,4 with time
with a slope proportional to the absorption coeffi-
cient. Just such a behavior is observed at long
transfer time in Fig. 2 for the 0,05 and 0.1%
samples. For the more concentrated samples,
the two kinds of transfer are not as distinctly
separated.

The peak absorption coefficient of the 0.8%
sample is nearly equal to that of the 0.1% sample,
25 cm™! (The more concentrated sample has a
greater inhomogeneous width.) Therefore, we
take the radiative transfer to be the same in both
cases. Subtracting the linear radiative contribu-
tion from the curves in Fig. 2 gives the nonradia-
tive transfer data in Fig. 3.

The observed value of R;,4 for the 0.19% sample
is about 4 times larger than the calculated value
using ¢=25 cm™!, @¢=0,005 cm, and y=250 sec™"
in Eq. (3). However it should be noted that in the
analysis, transfer outside radius a is neglected
and thus R,,4 is underestimated since the viewing
volume, as determined by the lens preceding the
Fabry-Perot, extends outside the excitation vol-
ume.

We describe the nonradiative transfer by a
cross-relaxation equation

N pe

- B
TS v (N geNp=Ng4Np) (4

with a similar equation for N ,, where B is an av-
erage single-ion-single-ion (S-S) transfer rate.
A more refined model should incorporate a dis-
tribution of B’s as recently discussed by Huber
and Ching'®; however, we found that the data
could be reasonably fitted with one or two values
of B. A solution of the equations for N ,,=0 at ¢
=0 gives for the ratio of acceptor to donor fluo-
rescence

Ny A(l-e™?)

Np, 1+Ae™ Pt ¢ (5)

where A=N ,/N,. The curves in Fig. 3 are a fit
of this equation to the data for various A and 3
parameters. The total A values are found to be
in the range ~6 to 16% rather than A =100% given
by the simple model with the reasonable assump-
tion that the inequivalent sites are equally occu-
pied by impurity ions. The observed small A
values indicate that the major fraction of ions
are localized and do not resonantly transfer en-
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ergy. The need to use two sets of A, B parame-
ters in Fig. 3(b) suggests that two distinct kinds
of spatial distributions of ion resonant frequencies
exist in the crystal. This could arise, for exam-
ple, if Cr ions tend to precipitate along disloca-
tions or near other defects.

We now consider the interaction mechanisms
responsible for the nonradiative transfer. The
fastest observed transfer rate to one of four near
neighbors! is P=5500/4 sec~! from which we cal-
culate the interaction matrix element {I) from
the transfer equation®

P=ﬁ-2<1>zjg1(V)g2(V) dV, (6)

where the overlap integral is 1/7A, and A, is the
observed homogeneous linewidth of ~100 MHz for
0.8% ruby. This gives {I)=3.5X%10"% cm™~! com-
pared to the value (I )gyp-qip=4.4%X1077 cm™" cal-
culated for a dipole-dipole interaction’ for an ion
spacing' R=(0.174,/A,N)? (assuming there is
microscopic broadening) where A;=10 GHz is

the inhomogeneous width and N=%Xx2,6 x10%°
cm™ for 0.8% ruby. These matrix elements are
considerably smaller than the exchange matrix
element of 2.5 x107% ¢cm~! estimated by Birgeneau®
for single-ion-pair (S-P) transfer. We conclude
that his estimate of a 0.1- usec S-S transfer time
using the exchange matrix element is not appro-
priate for ruby at low temperatures because of
inhomogeneous broadening and the increased dis-
tance between resonant ions. Thus it appears
while S-P? and phonon-assisted nonresonant
transfer® occur via an exchange interaction,
resonant S-S transfer in ruby at liquid-helium
temperatures occurs via an electric multipole
interaction, possibly dipole-dipole.

In conclusion, studies in a magnetic field might
allow a direct measurement of the radiative
transfer since the nonradiative transfer would
presumably be suppressed because of the large
reduction of the homogeneous linewidth (~150%
for 0.2% ruby)'®'” when a field is applied along
the ¢, axis. Another aspect which needs further
study is the lineshape and width, A,, of the trans-
fer line which will affect the derived magnitude
of the nonradiative transfer. For example, if the
transfer were all radiative involving a single
emission and absorption sequence, then we would
expect a linewidth’ A,, =2A; where 4, is the laser-
excited fluorescence linewidth at v;. The nonradi-
ative transfer width A,, (for a single transfer) will
be in the range A;<A,,<24A,; depending on the spa-
tial distribution of the ion resonant frequencies.
Experimentally, we observe A, =1.34; to 24, de-
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pending on position of the crystal. Obviously,
the two transfer processes can be intermingled
in a complicated way.

Finally, our observed slow nonradiative trans-
fer rate in concentrated ruby is consistent with
the earlier results of Heber* and Gerlovin'? as
well as with other recent experiments, ! 1318
Also, we see no evidence of any sudden increase
in transfer rate as the Cr concentration is in-
creased from 0.05 to 0.8% which, along with
other recent work,® % guggests that an earlier
claim® for observation of an Anderson transition
in ruby may be incorrect. If such a transition
occurs in small domains,'! then this must in-
volve less than ~19 of the ions.
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Nonradiative resonant energy transfer has been directly observed in ruby. However,
the transfer rate is much slower than previously thought. For example, at 0.25% Cr con-
centration, an excitation will transfer roughly once in the radiative lifetime. We conclude
ruby is unsuitable for observing an Anderson transition.

PACS numbers: 71.50.+t, 66.90.+r, 78.50.Ec

It is believed by many researchers that excited
Cr®* ions in pink and red ruby resonantly transfer
their energy to neighboring ions rapidly. This
conclusion'*? is based on theory and the absolute
ratio of the single-ion fluorescence intensity at
6934 A, and the trap fluorescence intensity at
7009 A, and further supported by the similar de-
cay lifetimes even though the trap lifetime is 4.6
times shorter than the single-ion lifetime. Ener-
gy transfer in ruby attracted widespread interest
when the trap/single-ion fluorescence ratio was
used to monitor the ion-ion energy transfer within

the inhomogeneously boradened R, line. A sharp
“preak” in the ratio as a function of laser fre-
quency was interpreted® as evidence for mobility
edge® in an Anderson transition.® The experimen-
tal results were also in rough agreement with ear-
lier calculations.®

We have directly observed resonant nonradia-
tive energy transfer in ruby,” and find that the ion-
ion transfer is much slower than previously be-
lieved. This fact eliminates the possibility of ob-
serving an Anderson transition in ruby as report-
ed by Koo, Walker, and Geschwind.® The conflict
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