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Stability and Nonlinear Evolution of Plasma Clouds via Regularized Contour Dynamics
Edward A. Overman, II, and Norman J. Zabusky

Department of Mathematics, University of Pittsburgh, Httsbuxgh, Pennsylvania 25261
(H,eceived 18 July 1980)

A model is introduced of an ionospheric plasma cloud (deformable dielectric) with a
piecewise-constant ion density and a diffusive-regular7'sed boundary. The linear stability
of a single-contour circular cloud is studied and a new evolution equation for modal
amplitudes is obtained which has the property that the wave number of maximum ampli-
tude decreases with time (downward cascade) . Analytic expressions show that large
clouds evolve more slowly and appear more dissipative.

PACS numbers: 52.35.Py, 02.70.+d, 41.10.Dq, 94.30.-d

Ionospheric, collision-dominated, low-P plasma
clouds, driven by ambient, uniform electric fields
or winds are being studied for two main reasons.
First, they are probes of properties of the natu-
ral and disturbed ionosphere. Second, they evolve
nonlinearly and yield magnetic field-aligned fine-
scale structures (irregularities or striations)
that can degrade radio-wave propagation. '

Past analytic studies of the evolution of ion den-
sities have been almost entirely confined to the
linear stability of one-dimensional (1D) stationary
states. Linson and Workman, ' Shiau and Simon, '
and Volk and Haerende14 attributed the cause of
striations to the E & B gradient-drift instability. '
Presently there are no 2D stationary states of
continuous density variation and no 2D stability
analyses exist.

In recent computational studies, finite-differ-
ence algorithms were used to study the evolution
of 1D and 2D ion density clouds with small-ampli-
tude 2D perturbations. " It has been found that
the growth of sinusoidal perturbations on 1D
clouds agrees with linear theories. ' These per-
turbations evolve into fingerlike striations that
emanate from the cloud's "backside" (the direc-
tion opposite to the drift velocity E x B/j B

~

').
The results obtained are in qualitative agreement
with field experiments.

We now investigate the linear stability of a tzoa-
dimensiona/ model of an idealized cloud, namely
a piecewise-constant distribution of ions:

( )
iN for (x, )yED,

( )
JN+ for (x, y) &D,

where D is a simply connected, bounded region in
R' with boundary I'. The contour, I", deforms
with a velocity V„=E && B/~ B~', where E is the
self-consistent electric field on the inside of F
and B =B,e, is Earth's magnetic field, assumed
to be constant. In the rest of this paper we set
B,=1. Our contributions are twofold: (1) We in-

V (NVe)=0,

B,N+V. VN= vV'N,

v=-e e„c+e,8„4,

(2)

(3)

(4)

where 4 --E,x as
~
(x, y) ~

-~. Here v is the dis-
sipation parameter (typically very small), E, is
the ambient electric field, and E=- VC, where 4
is the potential.

For piecewise constant N, (1), Eq. (2) is equiv-
alent to

V'C =0 for (x, y)e D,

V'4+ = 0 for (x, y) EE D,

with the boundary conditions

C, --E,xas ((x, y)~ -~, (6a)

4+ —-4, and ~„C,= A8„4 on F, (6b)

where 8„is the directional derivative normal to
the boundary I" and X=N /N+. These are equiva-
lent to the equations for a dielectric in a uniform
electric field. Equations (3) and (4) are equiva-

troduce a contour dynamical model of the piece-
wise-constant cloud which generalizes the "water-
bag" method. The evolution equations include a
physically motivated diffusive regularization pro-
cedure' which inhibits the formation of contour
singularities and makes the system zoell Posed.
(2) We analyze the linear stability of a circular
region and demonstrate a new linear phenomenon,
"downward cascade, "namely, the wave number
of maximum amplitude decreases with time. Our
work is a combined analytical-numerical study.
We also use our results to validate a numerical
algorithm which solves the nonlinear contour
evolution model.

The equations of motion of the continuum iono-
spheric plasma system of Fig. 1 (inset) have been
given as'
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lent to

8,(x, y) = (- 8,i, 8„4 )+».'(x, y),

for (x, y)wl', where s is the arc length on I'. If
v= 0, (7) agrees identically with (3) and (4) for
piecewise-constant distributions. For 0 & v «z, 'y
[see (14)] the regularization term, v8,'(x, y), in

(7) is consistent with the dissipative term, vV ~,
in (3) for small scale structures to lowest order
in v." Thus, we propose (5), (6), and (7) as a

short-time model of a cloud with steep sides. "
We now analyze the linear stability of a circular

region. It translates downward with a drift veloc-
ity V„=2E,/(X+ 1) associated with the lowest-or-
der internal electric field, E . We translate to
the (g, n) coordinate system, g = x and n = y+ p~ t,
and then convert to polar coordinates (r, p) where

y is the angle measured counterclockwise from
the positive n axis. We will solve (5), (6), and
(7) on the perturbed boundary

R((p, t ) = p(t )+ ep'"(t ) = p(t ) + e n, '"(t ) + Q n '"'(t )

cosmic,

(&)
m=i

where, for convenience, we have assumed the perturbation is symmetric about y=0. From (5) and

(6a) we have

4 (r, y)=A, +Jr B sinmp,
m=&

(9)

4+(r, y) =E,r sing+ Co+ g r D sinmy.
m=1

Substituting (9) and (10) into (6b) we obtain, to first order,

B '"= —2[(A. —I)/(A+ 1)']E,p n

(10)

for m ~1. Note that the induction of a dipole field in the first-order solution causes a downshift by one
between the Fourier coefficients of the potential B '" and the boundary perturbation, n +,'".

To calculate the time evolution of n '" we write (7) in polar coordinates in the translating frame of
reference

8&R = —R '(8 „4 + R'8„4 ) + p& [cos y+ (R'/R) sing] —v[R + 2(R') —RR "]/R[R + (R') ],
where R'= 8R/8y. Substituting (8) in (12), we ob-
tain, to zeroth order, If Q =0 and

(12)

agp=- &p
1

so that
n (0)=5. .. (16)

p (r 2 2 pt )1/2
[so that R(y, 0) =r,(1+ ecosm, y)], then the solu-
tion of (15) is

where r, is the radius of the circle at t= 0. To
first order,

8,n = m(r, /p)n +, —Q(m' —1)(r,/p)'n, (13)

m —1
n (w)= ' v' o l(m(m.m-m p

~ ~ po
0

(17)

This has the downward-cascade property with the
where we have suppressed superscripts and where a e number of ma imum amplitude be'ng

y= 2r, 'E,(~-1)/(~+1)',

r= y t, and Q = v/r 'y (14)

8~nm™m+i Qm nm. (15)

Thus, strong (large A) clouds evolve more slowly
and appear more dissipative. We simplify (13)
with two nonessential assumptions: First, re-
place p by x, since the zeroth-order radius change
only weakly affects stability. Secondly, replace
m' —1 by ~ . We obtain

m, „=m,/(1+ ~), (1&)

at time 7;
Figure l(a) shows the graph n (~) vs m of (17)

with rn, =40, and times indicated. We also find
that the half-width (width in m at half-amplitude)
of(17) increases as

A,g, = 2(2 ln2)'i'[ m, „(m, —m, „)/mo]'i'. (19)

R(y, 7) attains its maximum value R,„when y
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regularized contour dynamical algorithm with a
node insertion-and-removal algorithm. " The
close agreement between the linear and nonlinear
solutions validates the numerical algorithm.
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Time-Dependent Images in Transmission Electron Microscopy Associated
with the Phase Transitions of NbSe3

K. K. Fung and J. W. Steeds
II, H. Wills Physics Laboratory, University of Bristol, Royal I'ort, Bristol BS81TL, &ngland

(Received 3 June 1980)

Strandlike domains have been observed in NbSe3 at temperatures below 144 K by imaging
in one of the satellite reflections produced by the phase transition. These appear to
twinkle rapidly with many strands in the field of view lighting up and switching off in
periods of a few seconds. In addition, fringes along these strands have been observed.

PACS numbers: 64.70.Kb, 61.16.Di, 72.15.Nj

The unusual properties associated with the
phase transitions of NbSe, at 144 and 59 K have
aroused a great deal of interest. ' In particular
the non-Ohmic electrical conductivity observed
near both these transitions has stimulated several
investigations" but still requires a full explana-
tion. The material grows in the form of blade-
shaped whiskers with the unique axis (b) of the
monoclinic unit cell along the whisker. ' At each
of the phase transitions incommensurate satel-
lites appear in diffraction experiments with wave
vector components along the 6 axis which differ
slightly from 4b*.' It is generally accepted that
the phase transitions are driven by charge-den-
sity-wave (CDW) instabilities and that the non-
Ohmic conductivity results from unpinning of the
charge density waves. ' However, direct evidence
for the unpinning is at present lacking and the de-
tailed microstructure of the incommensurately

modulated state is open to conjecture.
It is the purpose of this communication to re-

port electron microscope observations which may
be interpreted as direct evidence for the move-
ment of CDW's and which indicate a stranded na-
ture of the modulated state. These new results
permit a reevaluation of a number of previous
publications on NbSe, and lead to a proposal for
the nature of the CDW state in this material.

The samples were grown by iodine vapor trans-
port. They have a resistance ratio which is typi-
cally about 100:I. Thin foils were prepared from
the whiskers for transmission electron micros-
copy (TEM) by cleavage and they were examined
in a Philips EM400 electron microscope with a
double-tilting liquid-helium-cooled stage designed
by Dr. J. A. Eades and built in this laboratory.
The samples were typically 50 nm thick. Tem-
perature control is provided and it is possible to
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