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The transition temperature of bis-tetramethyltetraselenafulvalene hexafluorophosphate
(TMTSF),PF, is found to decrease for pressures up to 12 kbar at a rate dT;, /dP = (-8
+1)X10”° K/bar. At 6.5 kbar, a coexistence of superconductivity (7, ~ 1.1 K) and a met-

al-insulator transition (7}, ~ 6 K) is found.
PACS numbers: 74.70.-b, 72.15.Nj

Recently, Jerome et al.! reported the first ob-
servation of superconductivity in an organic solid,
bis-tetramethyltetraselenafulvalene hexafluoro-
phosphate [(TMTSF),PF,], with a transition tem-
perature T, ~0.9 K at 12 kbar of applied pressure.
Moreover, they suggested that significant super-
conducting fluctuations might exist at tempera-
tures as high as 20 K. At ambient pressure this
anisotropic organic conductor has a number of
other interesting properties: a metal-insulator
transition temperature that is rather low? (T,
~19 K), electrical conductivity (o) exceeding 10°
Q"' cm~! near T,,;, nonlinear o at small electric
fields® below T,;, and an unusual magnetic sus-
ceptibility* below 7,,. The exact origin of 7,
is not known, but may be due to the formation of
a spin-density-wave ground state.3*

In this paper we report the first measurements
of the pressure (P) dependence of the supercon-
ductivity in (TMTSF),PF,. Besides confirming
the existence of superconductivity, our data pro-
vide two new interesting results: (1) At P~6.5
kbar both superconductivity and a metal-insulator
transition appear to coexist, and (2) T, decreases
sharply with increasing pressure. We believe
these results are significant for several reasons.
First, this material is the only one (to our knowl-
edge) to exhibit superconductivity in the presence
of an apparent gap over most of the Fermi sur-
face (as suggested by a strongly increasing re-
sistance between T,,; and T,). Secondly, our re-
sults argue against the view that important super-
conducting fluctuation effects occur for 7>T,.
The former result will be important as a compari-
son with theories®'® that predict the conditions
under which spin-density waves (SDW) or charge-
density waves (CDW) and superconductivity (SC)
can exist in low-dimensional metals.

© 1980 The American Physical Society

The single crystals used in the present study
were obtained by an electrochemical technique
similar to that described by Bechgaard? but with
constant-voltage conditions. The resistivity (p)
was measured by a four-probe ac (v~100 Hz)
technique, with gold-paste contacts. Pressure
measurements were made using a beryllium-
copper—clamped device with n-heptane as the
pressure medium., The pressure was measured
at low temperature with a lead manometer.

In Fig. 1, we show the four-probe resistance
of a typical (TMTSF),PF, crystal for T<4.2 K at
6.5 and 10.5 kbar and transverse magnetic field
(H . nearly parallel to b axis) equal to 0 and 41
kOe. At 6.5 kbar, we have both an activated re-
gion and a superconducting transition (7,~1.1 K)
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FIG. 1. Resistance of a crystal of (TMTSF),PF,
along the a axis below 4.2 K at pressure 6.5 and 10.5
kbar (inset). Transverse (nearly parallel to b axis)
magnetic field H, = 0 (solid circles) and 41 kOe (solid
squares). Dashed line is discussed in text.
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coexisting. Increasing H , leads to a decrease in
T, (with H_,~3 kOe) and a continuation of the acti-
vated p(7T) down to 50 mK (our limit). The mini-
mum in the normal state p, occurs at T, ~6 K
above which po< T up to ~55 K. At 10.5 kbar on
the same sample, the temperature dependence of
p has changed dramatically, and we find 7_,~0.8

K with px< T from 7, to 60 K, At ambient pres-
sure our samples have T, [as defined by (1/R)dR/
AT lgay ) at 12,5 K. Other workers? report T,
~15-19 K. This difference may account for why
we observe superconductivity at a higher 7', and
lower applied pressure than Jerome et al.!

Our results at 6.5 kbar are unusual. They sug-
gest that superconductivity exists even in the
presence of a gap over most of the Fermi surface.
Surprisingly when the gap is removed at 10 kbar,
the extra electron density of states, N(e€y), does
not help increase T,. Actually, at 6.5 kbar we
find that, below T~2.5 K, p,(7) increases much
slower than a true activation behavior [(i.e., p=p,
xexp(A/kT)]. We have found the same behavior
for p,(T) at ambient pressure below T~2.5 K. It
seems likely from the thermopower studies?® that
impurity states are present in the gap and these
can dominate the low-T resistivity. At 6.5 kbar
we also observe strong nonlinear electric field
(for E>50 mV/cm) effects for 7'<7T 4. These
will be reported in detail elsewhere, but they are
similar to what has been found at ambient pres-
sure.” This suggests that the physical origin of
T, is the same at 6,5 kbar and ambient pressure.
At 10 kbar when T,,; is gone, the E field effects
are absent at all 7 (for E up to our limit of 4 V/
cm).

We believe the most likely explanation for our
results is that under pressure (TMTSF),PF; has
become a more two-dimensional (2D) or three-
dimensional system. In 2D materials, the co-
existence of SC and CDW’s is well known, al-
though in these systems (in contrast to results
here) there is always a metallic p(T) above T,
(i.e., the Fermi surface has regions without gaps).
We have measured a strong decrease in the elec-
trical anisotropy under pressure. For example,
at 300 K, o, increases a factor of ~7 by 10 kbar
(note that b is approximately the direction of
maximum Se-Se interaction), whereas o, changes
only slightly. Thus we estimate 0,(300 K)/0,(300
K) to be ~7 at 10 kbar, whereas it is ~50 at am-
bient P in our samples. At 10 kbar we find
05,(300 K)/p,(4.2 K) ~p,(300 K)/p,(4.2 K), which
implies 0,(4.2 K)/0,(4.2 K) ~7. Since near T,
at ambient pressure 0,(20 K)/0,(20 K) is report-
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ed® to be greater than 1000, our results show that
the low-temperature anisotropy is greatly re-
duced under pressure. This trend towards higher
dimensionality would explain naturally the de-
crease in T, with pressure (if we assume a
Peierls-type transition) and the coexistence of
superconductivity and SDW. To verify these
ideas quantitatively, it will be necessary to make
more detailed measurements in the pressure
range below 6.5 kbar and between 6.5 and 10.5
kbar.

Another explanation for our data at 6.5 kbar is
that the superconductivity is filamentary and
caused by nonhydrostatic pressure effects. To
check this we have measured the critical current
(J,) by a pulse technique (to avoid heating) on the
same sample (at 7/7T,~0.4) for the three pres-
sures shown in Fig. 2. We find at all pressures
a similar J,, J,~0.1 A/mm? for one sample, and
J,~0.2 A/mm? for another. Thus, if the super-
conductivity would be filamentary at 6.5 kbar, it
must also be filamentary at higher pressure, On
the other hand, we observe a higher H,, at 6.5
kbar than at 10 kbar (3000 vs 600 Oe) as well as
some anomalous curvature near T,. This might
imply a SC state of weak coupling or even a fila-
ment; however, it has been suggested® that the
anomalous curvature could result from a situa-
tion where SC and CDW'’s coexist, in agreement
with our previous ideas. Thus, although we be-
lieve our evidence is good for the coexistence of
SC and a T, ;, more work will be necessary to
completely rule out the filament possibility.

The pressure dependence of T, for this sample
and two others is shown in Fig. 2. Although we
could not go above 14 kbar at low 7T with our ap-
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FIG. 2. Pressure dependence of T, for three dif-
ferent samples (solid circles, solid squares, and solid
triangles). T, is defined at point R =3 R,, .



VOLUME 45, NUMBER 19

PHYSICAL REVIEW LETTERS

10 NOVEMBER 1980 ‘

paratus, the decrease of T, with P is clear. We
find dT,/dP=(-8+1) x 107° K/bar. This negative
pressure variation of T, is unusually large, ex-
ceeding by more than a factor of 2 that of any ele-
mental superconductor. It is similar to the T,
variation found in the anisotropic superconductor
TasSe,, '° but differs in sign from that found in
NbSe, and (SN), .

We believe that our results are qualitatively in-
consistent with the idea that strong superconduct-
ing fluctuations occur above T, in (TMTSF),PF,.
If 1D fluctuations were present, then a model of
weakly coupled superconducting filaments should
apply (i.e., &, <fiber size). For this' model Deut-
scher, Imry, and Gunther'' showed

1/T,~1/T4+0.1N(e) /CT, 2. (1)

Here T, is the transition temperature in the
strong-coupling limit, and C is a measure of the
coupling between filaments., As pressure is in-
creased, we expect C to increase, and hence T,
should increase toward the value 7.,. However,
we observe only a large decrease in T, with in-
creasing pressure.

The observation® of a large, positive trans-
verse magnetoresistance (TMR) below 20 K has
been taken as evidence' for superconducting
fluctuations. The magnetoresistance which we
observe under pressure is large but smaller than
found at ambient pressure. Moreover, we find
that the TMR is strongly orientation dependent.
Both of these results suggest that the TMR re-
sults from a high mobility of normal electrons
and an anisotropic Fermi surface. Our prelim-
inary Hall measurements’ give a mobility greater
than 10* cm?/V -sec at 4.2 K. We note that in the
mercury chain compound Hg,-sAsF, both an ab-
sence of residual resistivity (such as shown in
Fig. 1 inset) and a large TMR are found and have
been shown to result from an anisotropic Fermi
surface.'?

A perhaps less convincing but noteworthy argu-
ment is shown by the dashed curve in Fig. 1,
This is the T dependence of the resistance at H
=41 kOe normalized to the H =0 data at 4.2 K.
Since we expect the large H field to destroy any
superconducting fluctuations, the near identity of
the two curves appears to rule out any large fluc-
tuations at H=0. Of course, it is always possible
that Ap(H) varies with T in a fortuitous manner,
such that the fluctuations are masked. We feel
this is very improbable.

The pressure variation of T, can be discussed
using the approximate relation 7,= (w)exp[—(1

+2)/x]. Here x=N(e€)I?)/M{w?) is the dimension-
less electron-phonon coupling constant, (I?)is
the Fermi surface average of the electron-phonon
matrix element and (w) is the average phonon en-
ergy. Two mechanisms can be considered which
would lead to a decreased A, and hence decreased
T., under pressure. Either {(w?)is enhanced or
N(ep)(I?) is decreased. Without other measure-
ments we cannot know exactly how N(ey){/?) will
change with pressure. In other low-dimensional
superconductors, a rather large change in N(ep)
x (I?) was required to explain AT, /AP since the
lattice was hard.”® Here if we assume N(eg){I?)
is constant the AT, we observe would require
Afw)/{w)~10%. This is a reasonable variation
for a soft lattice such as found in organic charge-
transfer crystals.

In summary, we find that 7, decreases with -
pressure in (TMTSF),PF, which appears to rule
out any contribution of superconducting fluctua-
tions to the conductivity. The decrease in T, can
be qualitatively explained by a hardening of the
lattice modes. Finally, we observe a novel co-
existence of superconductivity and a metal-insula-
tor transition (with associated SDW ground state)
which is currently under detailed investigation,
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The question of localization is examined by employing the localization function method
in the limit of infinitesimal disorder for a square-lattice tight-binding model. Within
numerical accuracy we find that the localization function equals to 1 within the band;
this strongly indicates that all eigenstates become localized for nonzero disorder.

PACS numbers: 71.55.Ju

Recently there has been considerable discus-
sion about the existence or nonexistence of ex-
tended electronic states in two-dimensional (2D)
disordered systems.?

The purpose of this paper is twofold. First we
present two theorems concerning the localization
function method,? L(E), which is based on Ander-
son’s original approach®*; these theorems are 1

L(E)= hmlE VL B E) |V = hle) VAG, 0G, 0 M e G, Ot

N>

N>

where V is the off-diagonal matrix element Vi
of the tight-binding Hamiltonian

H=Z>€il i)<i|+§)'V”|i><jl ’

and

Gnio'"“'“(z)=<nii(z‘Ho'nl"")-liniﬁ (2)

the superscripts 0, #,,... denote that ¢,=¢, = +--
Finally the summatmn over j in Eq (1) is
over all sets of sites {n,, n,, ..., n,} which form
self-avoiding paths starting and ending at site 0.

The calculation of ¢, =G, %+ G, ® "2 "1 is
greatly facilitated by two theorems for t ‘“(z)
which are stated below (the proofs will be pre-
sented elsewhere): Theorem 1 states that

tj(h)(z)zn(Z—Eij)/H(z _Ei)’

=00,

(3)

where E 7 are the eigenvalues of H%"i---+ "y and
E, are the eigenvalues of H% the proof is based
on the fact that the poles of each G in the ¢;%(2)
are canceled by the zeros of the previous G. The-
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very useful because they allow the elimination of
some additional approximations associated with
the L(E) method. Second, we report results for
the L(E) function in a 2D system with infinitesi-
mal disorder. The localization function L(E)
which is less (more) than one in the regions of
the spectrum consisting of localized (propagating)
eigenstates is given by

.nN-lll/N’ (1)

lorem 2 states that
t;%(2)=det{G,; '} /Gy, 4)
where the elements of the matrix G;¥, G,,, are

the Green’s functions G,,=(n|(z - H)™}m), and
the sites n, m belong to the self-avoiding path j.
Equation (4) is valid for both open and closed self-
avoiding paths. Theorem 2 is proved either by in-
duction or by starting from Theorem 1. Up to
now ¢, (z) was approximated by (Gnlo)” in order
to avoid the very tedious calculations of Green’s
functions with many sites excluded. Equation (4),
which expresses t,*’ in terms of Green’s func-
tions with no sites excluded, greatly simplifies
the calculation of ¢;,'*” and makes the approxima-
tion ¢, ~(G, °)* unnecessary. In the present
case of infinitesimal disorder, G,, are the peri-
odic Green’s functions, which can be calculated
very accurately; thus we avoid here another usu-
al source of approximation, namely that of re-
placing G,, by an appropriate average (e.g., the
coherent-potential —approximation average).
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