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q ~~
and g& are quite independent, and hence so are

the expansions for g& and g~~. That these indepen-
dent expressions give rise to expansions that
satisfy the SSB is greatly reassuring.

In order to see the effect of these new terms in
the & expansion for y, and y„,we show in the ac-
companying Table the sums to order & and order
~' of y, and yyy as well as the best series esti-
mates. In every case the O(e') term has effected
a substantial improvement over the sum to O(e),
and in three dimensions all sums to O(e') are
within 3% of the series estimates. The agree-
ment obtained by using y„=v—1 and summing to
O(e') is significantly worse.

We conclude that surface scaling is well sup-
ported by our calculations, but that the relation

p 1 due to Bray and Moore is

incorrect�.

After submission of this Letter, we became
aware of the recent calculations of Diehl and
Dietrich, "who confirm our result for g~t by an
alternative calculation. They have also derived
the scaling laws for surface exponents.
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The leading terms in the magnetic equation of state are calculated for models with
random fields and random uniaxial anisotropies for dimensionalities d &4. In the ran-
dom anisotropy case we find a new low-temperature phase, in which the magnetization
vanishes but the zero-field susceptibility is infinite, because of algebraically decaying
correlations. No phase transition is found for the random field case.

PACS numbers: 75.80.-m, 75.50.Kj

It has recently been realized theoretically that
when fluctuations are taken into account, then
various types of randomness destroy long-range
magnetic order in Heisenberg-like systems (m
& I spin components) with realistic dimensionali-
ties d&4. Of particular interest are systems
with (a) random magnetic fields, 'where the ran-

domness enters via

P[h(x) S(x)], [h(x)).,= o, [Ih(x) I']-= ~,

and (b) random uniaxial anisotroPy, ' where the
randomness arises via DP, [n(x) S(x)]', w-here

n(x) is a unit vector with random direction. Sys-
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tems with random off-diagonal exchange interac-
tions (e.g., random isotropic dipolar interactions)
should exhibit the same behavior as in case (b).'

Although various arguments exist for showing
that these models have no long-range order for
d(4, not much is known about their actual mag-
netic properties. In this paper we present the
first calculation of the equation of state for these
models.

In the case of random uniaxial anisotropy we
find that although theme is no long-range order
(the magnetization M goes to zero uith the field
H) at any finite temPerature T, the magnetic sus-
ceptibility (g- M/II) diverges at a finite tempera-
ture T„andremains infinite for all T & T, . The
shape of the isotherms has the form H-M at T,
and H-M ' for all T& T, . Neglecting convention-
al critical fluctuations we find

6 = (10 —d)/(6 —d) and 0, = (8 —d)/(4 —d) .
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We have also calculated the two-spin longitudinal-
and transverse-correlation functions for T (T, .
In the limit H -0 (i.e., M-0) both approach the
limit I/q', giving rise to a power law decay of
the form 1/r' '

There is no such transition in the random-field
case, for which g remains finite for all T)0.

The random anisotropy model was originally
formulated to account for the magnetic behavior
of amorphous rare-earth alloys. ' Much work has
been devoted to mean-field treatments of the
model, which predict a ferromagnetic state, and
various experiments have been interpreted as
agreeing with these predictions. " Particular
attention has been given to measurements of the
magnetic equation of state of such alloys. These
are usually presented in terms of "Arrott"
plots" "in which the ratio H/M is plotted (for
fixed temperature T) versus M'. Mean-field the-
ory predicts that H/M should be linear in M' [Fig.
l(a)]. In usual ferromagnetic cases, isotherms
in the paramagnetic phase (T) T, ) intercept the
H/M axis at the inverse susceptibility, y . For
T & T, they intercept the M' axis at the spontane-
ous magnetization" M, '.

In many of the existing experiments on amor-
phous rare-earth alloys, "'Arrott plots were
extrapolated from large values of H/M down to
H/M= 0, apparently yielding a finite M, '. How-

ever, the experimental curves show deviations
from linearity, and it has not been clear how ex-
actly to extrapolate them to low fields.

In this Letter we relate the theoretical predic-
tion concerning the absence of long range order—-
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FIG. 1. Arrott plots. The numbers on the isotherms
indicate the values of t. (a) Nonrandom case, (b) rand-
dom anisotropy case, and (c) random field case.
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W = [a„(D/J}'/m(m+2)]M

in the random anisotropy case and by

A = a~(a/J}

in the random field case. The d-dependent co-
efficients a ~ and a~ are of order unity for d = 3.
The curves in Fig. 1 were drawn by using m =1
and A(m —1) =0, 0.5M', and 0.3, respectively.

(2)

with the Arrott plot experiments. Earlier theo-
ries dealt either with'"'" d) 4 or found an in-
stability of the uniform nonrandom behavior for
d (4.' '" Although that instability has been con-
jectured to yield a spin-glass ordering for large
random uniaxial anisotropy, "no clear statements
have been made as regards the detailed nature of
the magnetic behavior of systems with random
fields or random uniaxial anisotropies at d &4."

We have calculated the equation of state of sys-
tems with random fields or random uniaxial an-
isotropies, to leading order in these random var-
iables (b or D'). Our results are presented in the
form of Arrott plots in Figs. 1(b) and 1(c). As
expected from the general arguments, "the iso-
therms never intercept the M axis, confirming
that for both models M, =O. In the random anj.sot-
ropy case [Fig. 1(b)], there exists a temperature
T, for which the isotherm first reaches the ori-
gin (as H-M ). All isotherms for T(T, also ap-
proach the origin (as H-M '). For relatively
large values of H/M the isotherms look linear
and might be extrapolated to a finite value of M, '.
The effects of the random anisotropy, which give
rise to the curvature of the isotherms towards
the origin, begin to be felt around values of order
H/M-(D/J) ', where Jis the exchange interac-
tion and a=4 —d. It is, therefore, important to
take data, for much smaller values of H/M than
has generally been done" before extrapolating to
H/M-0. In the random field case [Fig. 1(c)]
one sees a similar curvature of the isotherms for
small H/M. However, the lines never reach the
origin. They always intercept the H/M axis at a,

finite value, yielding a finite susceptibility and,
therefore, no transition.

More explicitly, we find that in both cases the
equation of state may be written in the form

H/M = t+ M'+A(m —1)(H/M} (1}

where t = (T T,)/T„T,be—ing the ordering tem-
perature of the nonrandom problem, and where
the units of M have been choosen to make the co-
efficient of M' equal to unity. The parameter A
is given by

Note that in the random anisotropy case A -0 as
m -~, and the effects predicted here disappear.

We briefly describe the derivation of Eq. (I),
first for the random field case. We start with
the usual Ginzburg-Landau-Wilson Hamiltonian
with a random-field term, ' and add a uniform
field in the 1-direction, HP„S'(x). We next fol-
low the standard diagrammatic methods for cal-
culating the equation of state": We shift S'- S'
+M, and rewrite the Hamiltonian as H Bp+By
where

H, =-—,
' f(r~+q')S'(q)S'(-q)

--'f(r +q'} p s"(q)s (-q)
(X=2

and H, contains the remainder. In Eq. (4), r~
and rr are the exact (renormalized) longitudinal
and transverse susceptibilities, which satisfy the
relations rr =H/M and rl, = (BH/BM). We now
make a perturbation expansion in H, and finally
average over the random fields. In addition to
the usual terms" there arise terms involving the
random fields. If we assume a Gaussian distribu-
tion of the field, only terms in which pairs of
fields have been multiplied and averaged over
contribute. ' The leading term in the expression
for H thus becomes —4(b /J)uM(m —1)J, (rr +q') ',
where u is the coefficient of S' in the Ginzburg-
Landau Hamiltonian and where & has been nor-
malized by J to make the coefficient of q'S(q)
~ S(- q) equal to unity. All the other terms linear
in' can be resummed in away similar to that
used by Nelson, "and can be shown to be small for
B -0. An explicit evaluation of the integral then
yields Eqs. (1) and (3) (with the normalization
4uM'-M'). " Note that the "conventional" terms
in the perturbation expansion for H/M do not di-
verge as H-0. They will at most shift the value
of T, , and modify some of the power laws in Eq.
(1). By themselves, these terms give rise to the
usual nonclassical equation of state. " We believe
they will not change the qualitative nature of our
results.

In the random anisotropy case, the shift S'- S'
+M generates a term Dg, n'(x)M[n(x) ~ S(x)],
which is equivalent to a local random field h(x)
=Dn'(x)n(x)M. Substituting in the random-field
result then converts Eq. (3) into Eq. (2).

It should be emphasized that our calculations
have been carried out only to lowest order in 4
(or D'). In cases with very large 4 or D' (or
very close to the origin in Fig. 1), it may be nec-
essary to include higher-order terms.
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It is interesting to note that the effect of adding
a cubic anisotropy of the form v+„Q„.,[S"(x)]'
will be to replace P/M in the last term of Eil. (l)
by (&/M+4vM'). Finite (not too small) values of
the spontaneous magnetization are then not ex-
cluded, and one probably has a first-order tran-
sition into a ferromagnetic phase. '

We hope that this paper will stimulate detailed
experimental studies of Arrott plots in the limit
of very low fields, in order to search for our pre-
dicted new phase and to measure the exponents
6 and 6,.
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