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Critical Behavior of the n-Vector Model with a Free Surface
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Correlation-function exponents gi and gfi appropriate to the free-surface problem have
been obtained by renormalization-group calculation to order & . By using the scaling re-
lations pi = &(2 —&)i) and y~~ = &(j.—gi~), expansions for p~ and 7i~ are obtained. These ex-
pansions are in agreement with the surface scaling relation 2p~ —p~i=&+ v, but disagree
with the relation p~i= & —1 due to Bray and Moore.

PACS numbers: 75.10.Hk, 75.40.Dy

A number of authors' "have recently studied
the critical behavior of the semi-infinite n-vec-
tor model. New critical exponents appropriate
to the surface problem have been variously de-
fined, "and scaling relations between these expo-
nents have been obtained. " The correlation-func-
tion exponents g~ and pic were introduced by Bind-
er and Hohenberg, ' as were the layer and local
susceptibility exponents y, and p, ] The exponents

g~ and gi~ are defined via the real-space spin-
spin correlation function G(p, z, z'), where p is a
(d —1)-dimensional vector giving position vector
coordinates in a plane parallel to the surface,
while z and z ' are coordinates perpendicular to
the surface. The definitions are G()o, z, z')- p'~ "((

as p - ~, with z and z' fixed, and G(p, z, z')
-(z') "i as z'-~, with p and z fixed. An

additional magnetic field term B', which couples
only to surface spins, permits the identification
of layer and local susceptibilities, y,

- -8'A/
sH BH' and y»- —&'A/sH", respectively, where
A is the Gibbs free energy and H is the bulk field.
The zero-field limit of these susceptibilities per-
mits the identification of corresponding expo-
nents viz. g, -t &i and g„-$ &».

I ubensky and Rubin4 calculated the exponents

g~ and gi~ to first order in e, and, through the
scaling relations y, = v(2 —qi) and y» ——v(1 —q)(),
also obtained the corresponding expansion for
and py] These were subsequently verified by
Reeve and Guttmann, ' who calculated y, and y„
directly to first order in e. Barber' derived the
scaling relation 2y, —y„=y+ v [hereinafter re-
ferred to as the surface scaling relation (SSR)J,
and in 1977 Bray and Moore' used an argument
based on statements correct to all orders in per-
turbation theory to suggest the relation y„= v —1

[hereinafter called the Bray-Moore surface rela, —

tion (BMSR)], which implies q((=1/v.
Related position-space renormalization-group

calculations have been made by several authors, '
though those calculations are not of direct rele-
vance to the problem at hand.

As pointed out by Bray and Moore, ' the BMSR
is satisfied by the exponent values of the two-
dimensional Ising model, the n-vector model to
order e, and the n = ~ limit of the n-vector model
for arbitrary dimensionality. However, series—
analysis studies have cast doubt on the validity of
the BMSR for some systems. Barber et al. '
found that for the n = 0, d = 2 model y] y

0 19+Q Q2,

while v —1 = 0.25. For the n = 0, d = 3 model they
found gyes 0 35+0 05 which is just consistent
with the series value of v —1=-0.4. The validity
of the technique which produced the observed dis-
crepancy in the d=2 case was confirmed by
Enting and Guttmann. " For the d=3, n= 1 (Ising)
model, Whittington, Torrie, and Guttmann, "
assuming the SSR, obtained p]y 0 33 + 0 04,
which is in agreement with the BMSR prediction
of y» ——-0.362', 'Q». For both bond and site per-
colation problems on the fcc lattice De'Bell and
Essam" obtained estimates of y» and v which
violated the BMSR. For two-dimensional percola-
tion at a surface, the surface transition does not

exist, since v)1. De'Bell and Essam also stud-
ied the n = 0, d = 2 model on a different lattice to
that chosen by Barber et al. ,

' and confirm the
breakdown of the BMSR observed by Barber et al.

Without exception, the above-mentioned series
analysis studies confirm the SSR of Barber. '

Given the apparent breakdown of the RGSR in
several systems, as suggested by the above ser-
ies studies, it was decided to extend the e expan-
sions of g~ and

radii

to second order in e in order
to determine whether the BMSR still held.

Following the formulation of t.ubensky and

Rubin, ' the Hamiltonian (in the momentum repre-
sentation) for a. semi-infinite O(n) system in d
dimensions can be written

s= f q( + d) I(happ'—(vpp3p+ '(p /4!) 2 E E E E f( ndq) p(q)p(q )p(t) )p' (q )5(pp; a(pep), ())
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where q = (P, k), p being a (d —1)-dimensional vec-
tor, vq=(-p, k), and the Fourier expansion func-
tions are

P, (x) = v 2 exp(ip ~ p)sin(kz),

by assuming that the spin interaction strength in
the surface is the same as in the bulk. " The real-
space variables are x = (P, z), where p is a (d —1)-
dimensional vector and the surface boundary is
located at z =1. The propagator for the system
at the bulk critical point, m'=0, is G~(')(k„k,)
= [6(q, —vq, ) —5(q, + q, ) ]/2q, , where q, = (P, k,)
and q, =(P, k,).

We have extended' the & =4-d expansion for the
two-point Green's function G~(k, , k, ) to second or-
der by expanding to two loops and calculating dia-
grams within the framework of dimensional regu-
larization. " The finite quantity G~ (k„k,) is
found by minimal subtraction" of poles in & from
G~(k„k,). The two quantities are related by
G~(k„k,) =ZG~"(k„k,). Since all the poles in c
contained in the wave-function renormalization,
Z, originate only from the momentum conserving
or "bulk" terms in G~(k„k,), the diagonal part of
G (k„k,) which is G (k„k,)[&(q, —~q, ) —&(q, +q, )]/
2qy obeys the usual renormalization-group equa-
tion." Consequently, and because the mass and
coupling- constant renormalization functions re-
main exactly as for the bulk system, the bulk ex-
ponents can be calculated in the usual way. The
renormalized coupling constant and its fixed-point
value can be taken from the calculation for the in-
finite system, and we have gleaned these quanti-
ties directly from Amit" after suitably matching
conventions. The G~ "(k„k,) are inverse Fourier
transformed to give G~(z„z,) in the mixed space.

The decay of the correlations of spins in the
boundary surface is assumed to be G~"(1,1)

n +2 (n +2)(4n +17)
2(n +8) (n +8)' (4)

From the scaling relations y, =v(2 —qi) and y»
=v(l - pic), and the known expansion for v, given
by

we obtain

n +2 (n +2)(n2+23n +60)
4(n +8) 8(n +8)'

n +2 (n +2)(2n'+49n +144)
2(n + 8) 8(n + 8)'

(5)

(6)

n +2 (n +2)(n'+31n +124)
4( +8) 8( +8)'

By inspection one sees that the BMSR of Bray and
Moore' is violated at order e'; i.e. , y]y~v
while using the known expansion for y, given by

n +2 (n +2)(n'+22n +52)
2(n+8) 4(n+8)'

one finds that the SSR of Barber, ' 2y, —y» =y +v,
is satisfie'd. This last result provides a particu-
larly valuable consistency check on our results.
The Fourier transforms required in evaluating

-p '+"ii and the asymptotic form of the bulk-spin-
surface-spin correlations is assumed to be G~ (1,
z,- ~)-p ""i, as p-0. [In fact, we have calcu-
lated Q, , G~"(1,z,), which is reasonable to as-Zp —1 P 0 2

~ Rsume has the same asymptotic form as G~ (l,z,- ~).] The critical exponents qadi and qi are iden-
tified by exponentiation. The results are

n +2 (n +2)(17n +76)
n +8 2(n +8)'

and

TABLE I. Sums to order & and & of p~ and p&i compared with the best series esti-
mates. Values marked with an asterisk are exact.

Dime ns ional ity
d

Best Best
Sum to Sum to series Sum to Sum to series
order & order & estimate order & order & estimate

0.75
0.833
0.625
0.667

1.031
1.235
0.695
0.767

0.945
1.375*
p 7p8

0.78'

—0.375
—0.333
—0.438
—0.417

—0.133
—0.012
—0.377
—0.336

—0.19
0.00*

—0.35
—0.33b

Ref. 8.
Ref. 10.
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q ~~
and g& are quite independent, and hence so are

the expansions for g& and g~~. That these indepen-
dent expressions give rise to expansions that
satisfy the SSB is greatly reassuring.

In order to see the effect of these new terms in
the & expansion for y, and y„, we show in the ac-
companying Table the sums to order & and order
~' of y, and yyy as well as the best series esti-
mates. In every case the O(e') term has effected
a substantial improvement over the sum to O(e),
and in three dimensions all sums to O(e') are
within 3% of the series estimates. The agree-
ment obtained by using y„=v —1 and summing to
O(e') is significantly worse.

We conclude that surface scaling is well sup-
ported by our calculations, but that the relation

p 1 due to Bray and Moore is

incorrect�.

After submission of this Letter, we became
aware of the recent calculations of Diehl and
Dietrich, "who confirm our result for g~t by an
alternative calculation. They have also derived
the scaling laws for surface exponents.

The authors would like to thank the Australian
Besearch Grants Commision for their financial
support.
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The leading terms in the magnetic equation of state are calculated for models with
random fields and random uniaxial anisotropies for dimensionalities d &4. In the ran-
dom anisotropy case we find a new low-temperature phase, in which the magnetization
vanishes but the zero-field susceptibility is infinite, because of algebraically decaying
correlations. No phase transition is found for the random field case.

PACS numbers: 75.80.-m, 75.50.Kj

It has recently been realized theoretically that
when fluctuations are taken into account, then
various types of randomness destroy long-range
magnetic order in Heisenberg-like systems (m
& I spin components) with realistic dimensionali-
ties d&4. Of particular interest are systems
with (a) random magnetic fields, 'where the ran-

domness enters via

P[h(x) S(x)], [h(x)).,= o, [Ih(x) I']-= ~,

and (b) random uniaxial anisotroPy, ' where the
randomness arises via DP, [n(x) S(x)]', w-here

n(x) is a unit vector with random direction. Sys-
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