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Scaling Behavior of Chaotic Flows
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It is shown that in the turbulent regime of systems with period-doubling subharmonic
bifurcations, the maximum Lyapunov characteristic exponent behaves like ~ =~p(x x )',
with t a universal exponent which is calculated to be t = 0.4498069. .. . This result is in
agreement with the available data on ~ for a number of dynamical systems.
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There exist a large number of physical systems
for which the nonlinear equations describing
their dynamics display transitions into a chaotic
regime in the absence of external noise sources.
This regime, which is characterized by broad-
band noise in the power spectral densities, has
been extensively studied in simple Quids, plas-
mas, chemical reactions, and various mathemat-
ical models. In the case of dissipative systems,
a pervasive pathway to turbulent behavior appears
to be made of a cascade of period-doubling sub-
harmonic bifurcations into a strange attractor in
phase space. This has been observed in some
experiments on the onset of Quid turbulence, ' 4

studies of driven anharmonic oscillators, ' non-
linear saturation of unstable plasma modes, ' and
several other mathematical models. ' ' This cas-
cading behavior in the periodic regime has been
shown to display universal features, independent
of the detailed nature of the governing equations. ~'

More recently, it has been established" "that
beyond the onset of chaos another set of fiburca-
tions takes place whereby 2" bands of the attractor
successively merge in a mirror sequence of the
cascading bifurcations found in the periodic re-
gime.

A hallmark of ergodic and mixing behavior for
nonlinear dynamical systems is their sensitive
dependence on initial conditions. Two trajecto-
ries in phase space that initially differ by a small
amount will separate exponentially in time, with
the divergence rate measured by a positive value
of the maximum Lyapunov characteristic expo-
nent, X, associated with the flow. '" For sys-
tems that display period-doubling subharmonic
bifurcations, the emergence of a positive value
for the envelope of X as the control parameter y
exceeds the onset value y„takes place in a steep
and continuous fashion, a behavior reminiscent
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FIG. 1. The Lyapunov characteristic exponent for
the one-dimensional ~ap xq+& = re (1—x&), with 0

xq - 1 and r, = 3.57. The sharp dips in the region
r) r, correspond to periodic orbits. (See Ref. 18.)

of critical-point phenomena in phase transitions.
As illustrated in Fig. 1, which has been computed
for a one-dimensional map, as r - r, + the en-
velope of X seems to approach its zero value
with power-law behavior, the sharp dips corre-
sponding to stable orbits in the chaotic regime.

In this paper we show that the power-law be-
havior for the envelope of X suggested by Fig. 1
is indeed universal for dynamical systems ex-
hibiting period-doubling subharmonic bifurca-
tions; the characteristic exponent behaves as

'X = X,(r r,)'-
with X, a constant of order unity and t an expo-
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nent which is given by

= 0.449 806 9. . .,ln5 (2)

enables one to write p(y/a") as kA(y), where R(y)
is a uniform function of y over the width of the
band, and k =a"2 ". Equation (6) then becomes

&&»~p'[y, 6"(r —r,)]+ I~ dy,

where y = a"x and 6"(r —r, ) is of order unity. In
order to evaluate this integral, first note that the
normalization condition for the probability func-
tion written as

2"f„.„„p(x)dx=2"a "h =1 (6)

where 5 is a constant which has been determined
to be given by 6 =4.6692616. . . (Ref. 10). This
result is in agreement with all present computa-
tions and measurements of X (albeit not extreme-
ly accurate) available for these systems.

Consider a one-dimensional map, "defined by
x„+~=f(x„,r) with f(x, x) a continuous, single-
hump function with a parabolic maximum in the
interval 0 & x &1, and y a variable that controls
its steepness. Iff "'(x, r) denotes the nth iterate
of the map, the Lyapunov characteristic expo-
nent, X(r), can be written as

N (2n)

X(y) =lim I g 2 „ ln df(xI»r)
1Y~+ k=] dXk

If we assume that there exists a probability dis-
tribution, p„(x),that is invariant under the opera-
tions of the map [i.e., p„(x,.) =Q„p„(x;.,')dx;, '/dx;,
where the sum is over the x;,'s that are mapped
into x,], we can express Eq. (3) as

~(.) =2 f (.)~. "~'" "'"
(4)dx

In the chaotic regime (i.e., r&r, ) the existence
of the reverse set of bifurcations that we de-
scribed above implies that up to the (n+ I) bifur-
cation, f1' 1(x;,r) maps points within a given band
of the attractor into the same band. Moreover,
since the distance between bands scales like n "
with e a universal constant, ' the probability dis-
tribution p(x, r) will consist of a set of 2" narrow
strips of width e "and height h, separated by re-
gions in which it is identically zero. This in turn
implies that Eq. (4) can be broken into 2" inte-
grals over each band evaluated with f1'"1(x,r). If
in the spirit of the Feigenbaum scaling study of
the periodic regime'o we assume that f~ (x, r) —x
= a "@[a"x, 6 "(y —~,)] with cp a universal function
of x, we can write Eq. (4) as

&(~) = a "f„„,„p(y/a. ")

X(r) =2 "X,'[6"(~-~,)]
where the functional dependence of X,' on 6"(r —r, )
describes the structure beneath the envelope.
Since we are not dealing with that structure we
replace it by a constant 'X,". We therefore see
that X increases as the number of bands within
the strange attractor merge pairwise into a sin-
gle one.

In order to obtain a scaling relation that in-
volves the control parameter r, we note that in
the highly bifurcated regime the value of r for
which the nth bifurcation takes places behaves
like~ o

r —r, =c& "

with c a constant, so that n = c'+ 1n(r r,)/—(-1&&).
Use of this equality in Eq. (7) results in

X (r) =XO2 ln(r —r, )/1n6,

where %0=2 ' Xo" or, equivalently

X(r) =X,(r —x,)'

(9)

(10)

with the universal exponent t, given by 1 =in2/1n6
=0.449 806 9. . . . Since points in phase space sep-
arated by an initial distance d will separate after
m iterations of the map like Me with M a con-
stant, Eq. (10) expresses the fact that the rate of
divergence will grow like a power law as one en-
ters the turbulent regime.

There exists at the present time a number of
calculations' ' ' ' and measurements of A. as
a function of r for many different systems dis-
playing cascades of period-doubling bifurcations
into a chaotic state. To within the accuracy with
which we can compare them with the predictions
of our scaling theory, they are all in good agree-
ment with Eq. (10). It is clear, however, that
more accurate calculations and measurements
will have to be made in order to have a precise
test of the theory. Furthermore, since the ef-
fect of external noise is to produce a bifurcation
gap in the sequence of available states" the scal-
ing behavior of X can only be checked in the limit
of smaQ fluctuations or truncation errors. This
appears quite feasible.

In concluding, we point out that the theory we
have presented applies only to a region near the
onset value r, for which the mirror sequence of
period-dou51ing bifur cation takes place. Although
in some dynamical systems~'" this sequence ex-
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hausts most of the turbulent regime, it is well
known that there are other nonlinear problems
for which there exist beyond the single-band at-
tractor a rich structure of orbits and bands, and
where our arguments may no longer apply. In
that region the observed growth of the envelope
of X as a function of y, although it still reflects
the effects of larger bandwidths, will require a
different theoretical approach from the one pre-
sented here. Nevertheless it is rewarding to have
a measure of chaos whose universal behavior
near onset is exactly calculable.
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by the National Science Foundation Contract No.
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