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the details of this experiment or time-dilation
effects. The relativistic rotating disk is in any
case a much studied topic.

We adopt the hypothesis that if two bodies in
close proximity ave velatively at vest for a time,
however shovrt, then one can find experimentally
if heat passes between them ov not. If this can
be applied to the annuli of the two disks, then the
possibility of thermal equilibrium for the appro-
priate portions of the two annuli occurs by (2) and
(4) only if T,(0)=T,(0). But the w values can be
different, the appropriate radii being given by (4).
Would experiment confirm that T,(0) = T,(0), and
that for given w,7,=v, equilibrium with the sec-
ond annulus occurs at radii 7, given by w,r,=v?
To accelerate bodies, large enough to have a tem-
perature, to high velocities presents formidable
obstacles. However, we shall assume that it can
be done and that (2) is thus confirmed. We have
already presented reasons why Eq. (2) is a rea-
sonable formula in any case.

Step 2: A special relativistic experiment is to
shoot a small body B with constant velocity

v=w,7, (5)

in a plane parallel to, but close to, disk A with
impact parameter 7, in such a way that it is in-
stantaneously at rest with respect to the annulus
of radius 7, as it passes just above it. Let the
rest temperature of B be #(0). One then has four
independent parameters T,(0), #(0), w,, and r,.
This experiment is of even greater difficulty than
the last. However, adopting the above hypothesis,
one may one day be able to find sets of values

for which the annulus is in thermal equilibrium

with B when the two are in close proximity. If
relation (1) holds, the value of a can be deter-
mined as follows:

Tl(rl) = t(l)) (6)

implies y,(7,) T,(0) = y(w,r,)?#0), whence by (5)

log[7,(0)/#0)] (M

a=1+ logy(w,7,)

If (7) does not always give the same value of a,
then an empirical determination of the tempera-
ture transformation is still in principle available
from (6) #(v) =v,(»)T,(0).
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Conservative Hamiltonian systems with two degrees of freedom are discussed where
a typical trajectory fills the whole surface of constant energy. The trace of the quantum
mechanical Green’s function is approximated by a sum over classical periodic orbits.
This leads directly to Selberg’s trace formula for the motion of a particle on a surface
of constant negative curvature, and, when applied to the anisotropic Kepler problem,
yields excellent results for all the energy levels.

PACS numbers: 03.20.+i,

The relations between classical and quantal
mechanics are of central importance to the under-
standing of physics. Classical mechanics is be-
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lieved to be a limit of quantum mechanics when
Planck’s constant is small. It is natural to use
the classical motion as a starting point in order
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to find an approximate solution for Schrodinger’s
equation. This idea was implicit in the “old quan-
tum mechanics” of Bohr and Sommerfeld, and
was made explicit in the WKB approximation.

The latter can be applied to problems with sever-
al degrees of freedom provided the separation of
variables can be carried out. There are two ba-
sic difficulties. First, conserved quantities be-
yond the energy have to be found which would per-
mit the separation of variables, even if they are
not analytic functions of momentum and position.
Second, if there are not any, the whole basis for
the quantization conditions of Bohr and Sommer-
feld vanishes.

The first point was clearly understood by Poin-
caré and became a frequent topic of investigation
by both mathematicians and astronomers in the
1950’s. The second point was first discussed by
Einstein' in 1917 and has received very little at-
tention. The emphasis seems mostly on how to
handle the occurrence of nonanalytic constants of
motion. Einstein gave the clue when he pointed
to the existence of invariant tori on the surface
of constant energy in phase space, and he showed
the way to the proper treatment of the quantiza-
tion conditions. But he then goes on to ask how
to proceed when there are no invariant tori, not
even nearby.

This Letter has two purposes. First, a large
class of examples without invariant tori will be
shown where a direct connection exists between
energy levels and classical orbits. The relevant
formula was given by Selberg® in 1954 and coin-
cides with a formula which the author® proposed
some ten years ago for Hamiltonian systems in
general. Second, an entirely different example
without invariant tori, the anisotropic Kepler
problem,’® will be treated. The same formula
gives very close agreement for the energy levels
between the solutions of Schrodinger’s equation
and a method which is based entirely on classical
mechanics. Only conservative Hamiltonian sys-
tems with two degrees of freedom will be dis-
cussed where the typical trajectory (with the ex-
ception of a set of measure zero) comes arbi-
trarily close to every point on the surface of con-
stant energy in phase space. The exceptional set
is formed by the closed orbits of which there are
many. They are all linearly unstable, i.e., a
trajectory which starts nearby in phase space
drifts away exponentially fast.

Call G(@”q’E) the quantum mechanical Green’s
function for such a system (positions ¢’ and ¢”
with energy E), and write it as a Feymann path

integral.* The limit G(q”q'E) of G(g"q’E) as
Planck’s constant # becomes small, is a sum
over all classical trajectories from ¢’ to ¢” at
the energy E. The energy levels can be obtained
from the “response functions” g(E) = [dq G (qqE)
or 7(E)=[dq G(qqE). They exist in a complex E
plane and their singularities give the energy lev-
els. g(E) has poles on the real axis, while F(E)
may have a more complicated structure which
will be interpreted, however, as approximating
g(E). All the classical periodic (closed) orbits
at the energy E have to be found along with the
following quantities: the action integral S=¢pdq,
the length T, (measured in time) of the projection
into position space, the number v of conjugate
points, and the stability exponent «. The expres-
sion

- i T, i .m
g(E)——%pg(})rb. 2 sinhza exp<%s—zu 2> (1)
was derived by the author along with a similar
formula for systems with invariant tori. In the
latter cases, the quantization conditions of Bohr
and Sommerfeld were shown to follow immediate-
ly.°

Selberg’s trace formula states that g(E)=g(E),
i.e., the approximate expression (1) happens to
be exact for a particle moving freely on a surface
of constant negative curvature. In Poincaré’s
model® of hyperbolic (Lobachevski) space as the
upper Euclidean half-plane y >0 with the metric
ds®=(dx®+dy®)/y?, a closed surface of constant
negative curvature becomes a hyperbolic polygon,
i.e., a domain whose boundaries are Euclidean
circles with their centers on the x axis and where
points on opposite sides are properly identified.
A particle moves along a geodesic with constant
velocity and its energy E equals its kinetic ener-
gy so that E>0. The geodesics are again Eu-
clidean circles with their centers on the x axis,
but when such a geodesic hits a boundary of the
polygon, it has to be continued on the opposite
side at the appropriate point with the same direc-
tion. The enumeration of the periodic geodesics
is difficult to carry out in practice.

With L being the length of the closed geodesic,
m being the mass of the particle, and the radius
of curvature of the space R=1, S=L(2mE - 7%/
4R?)'?, The time T, is the simple period, i.e.,

a submultiple of the total period 7', and is given
by To=mL,2mE —#*/4R?)*? in terms of the sim-
ple length L,. There are no conjugate points,

and the stability exponent o equals L. Schrodin-
ger’s equation is A@ +x@ =0 with x =2mE /%% and
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periodic boundary conditions corresponding to
the identification of opposite sides. The Lapla-
cian Ais y%(8%/8x%+5%/8y?) in the Poincaré metric
and

2

1 I
gB)=% pp with B,=g o, )

where ), is the nth eigenvalue, 2,=0. If 7 }(2mE
~7%/4)Y2=4(s = %) and Re(s)>3, one finds Sel-
berg’s trace formula’ upon setting g(E) from (2)
equal to g(E) from (1),

(2s-1)>5< ! 1 >

s(s=1+xr, s+n

n=0
L
_ Q -sL
=z, Tmepn ¢ - @

The term 1/(s +#) on the left-hand side comes
from the geodesics of zero length (going from ¢
to ¢) in G and G. If it were not so difficult to
enumerate the periodic orbits, this formula could
be used to determine the spectrum of the La-
placian.

The Hamiltonian of the anisotropic Kepler prob-
lem® has a kinetic energy with a large mass m,
in the x direction and a small mass m, in the y
and z directions, but an ordinary Coulomb poten-
tial. If properly normalized,

u? vi+w? 1

T2 2w

H 4)

- (x2 +y2+22)1/2

2n
& = 2n7 cosh®(3y) - 37 sinhy Y
i=1 j==

The parameters y and 7 are chosen such as to
give the correct maximum 2»7, and the correct
average n7(1+e”?) in the limit as n— «. The
minimum is always 0. The mean square devia-
tion of the values (6) from the computed values
for u?=5.0 and # =5 is less than 0.21 while the
average of & is 22.16. For silicon, u*=4.80,
¥ =0.622, and 7=2.8844. The crudest approxima-
tion was used for a where a =»$ with g~ 1.5,
Thus, at least the variations of the action inte-
gral from one periodic orbit to another are cor-
rectly represented, and may be expected to show
the constructive interference in (1) which yields
the energy levels. Because of T =dS/dE the peri-
od T differs from S only by a factor 3E. The fac-
tor T, in (1) differs from 7T in certain cases
where the orbit has special symmetries. The
correct value of T, is obtained if the summation
in (1) is carried over all binary sequences of

152

in terms of the position (v,y,z) and the momen-
tum (,v,w), where u= (m /m,)"? and v=(m,/
m)"?. The energy E can be used as a scaling
parameter. All calculations can be limited to H
=—%. So that for bound states (E <0)

4 \1/2
= (:%) 56 wdx +vdy +wdz), (5)
where the integral is independent of E. For an
electron around a donor impurity in silicon, m,
=(Gn,ms)"*=0.41T7 electron mass, e is the elec-
tron charge, and «=11.4 is the dielectric con-
stant.

The angular momentum around the x axis is
set to 0. The classical motion can then be limit-
ed to the (x,y) plane where the trajectories are
inside the circle x*+y*=4. Each trajectory is
started at £ =0 on the x axis with the initial posi-
tion x, and initial momentum (,,v,), where v,
>0. The other intersections with the x axis de-
termine a sequence of reals (... ,x.;,%q,%;,%z,
...) and a binary sequence (... ,a.,,@o,01,02,...)
where a; =sgn(x;). To each binary sequence with
a period of even length 2n corresponds exactly
one periodic orbit which closes itself smoothly
after crossing the x axis 2x times, and vice ver-
sa.

The numerical analysis of all such orbits for »
< 5 was made with y*=4.0 and *=5.0.° The de-
pendence of & =$udx +vdy) on the periodic orbit,
is in excellent (but not exact) agreement with the
expression

+
27 aiajeXp(-Ylj"i|)- (6)

| even length 2x and T, is always replaced by T/x.
This rule is independent of the approximation (6).
Finally, the number of conjugate points always
equals 4n, exactly as in the ordinary Kepler
problem in three dimensions.

When E increases from -« to 0 along the real
axis, s =—i (=mqe*/2k*7°E)"* goes down along
the negative imaginary axis starting at the origin,
and

ng(E)dE= »

binary seq.

%.Z_S_ir];a exp(=s®), (7)
The values of o are quite large, and 2 sinhza is
replaced by exp(a/2) (cf. Miller'®). Some singu-
larities may be lost thereby which are at some
distance from the real E axis, and do not yield
any sharply defined energy levels.

The expression (7) becomes the grand canonical
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partition function of an Ising chain whose two-
body exchange interactions decay exponentially
with distance. Such systems were treated by
Kac!! in the limit of long-range interaction, i.e.,
when y - 0. The method of Kac proves very ef-
fective in the present situation where y is not par-
ticularly small. The summation over the binary
sequences of fixed length 2x is transformed into

a 2n-fold integral which can be interpreted as cal-
culating the trace for the 2nth power of an opera-
tor K(s). This operator can be represented as a
matrix with reference to the eigenfunctions of the
harmonic oscillator. The matrix elements are
polynomials in the variable z =s7 sinhy apart from
an overall factor 2 exp[~s7(1+e~?)/2]. The even
(odd) harmonic oscillator functions give rise to
the energy levels of even (odd) parity.

If s =0, the matrix is diagonal and the eigenval-
ues are exp(-1ly), with7=0,1,2,.... Whens
moves down along the negative imaginary axis,
the eigenvalues j,(z) become complex and spiral
clockwise toward the origin. Since only the eigen-
values near the origin contribute potential singu-
larities in (7), it was not necessary to go beyond
50-by-50 matrices, and standard routines for
diagonalization:

ngr(E)dE

2z
:Foln[l—4“12(z)exp(—ey—_1—§)J. (8)
where u,(z) depends only on y. The parameters

s and T occur only in the combination z =s7 sinhy.
If one takes the exponential on both sides, one ob-
tains an infinite product whose logarithmic deriv-
ative with respect to E is the response function
Z(E) and whose zeros are the poles of Z(E) just
like a good zeta function. With z = —i¢ (where ¢
>0) starting at 0, the logarithm of u,(z) eventual-
ly settles down with a negative real part around

-~ 0.3. Therefore, the singularities of (8) occur
very near the imaginary z axis, and the resulting
energy levels are sharp in spite of the large in-
stability of the individual periodic orbits. The
energy levels are given by E = —m ,e*7° sinh%/
2k*7°¢®, where ¢ is such that the phase of 2y,

x exp() in (8) is an odd multiple of 7.

The resulting values of E for silicon are com-
pared in Table I with those of Faulkner'? who
solved Schrodinger’s equation by the variational
method using a basis set of hydrogenlike func-
tions with principal quantum numbers 1 through
5 for even parity and 2 through 6 for odd parity.
The designation of the energy levels is identical

TABLE I. Energy levels for a donor impurity in sili-
con. Designation of the levels in columns 1 and 5, earl-
ier results in columns 2 and 6, results of the present
work in columns 3 and 7, Faulkner’s results in columns
4 and 8. Units are millielectronvolts.

Even parity Odd parity
1s 36.81 29.06 31.27 2p 9.20 10.48 11.51
2s 8.35 8.83 3p 5.10 5.48
3d 4.09 4.63 4.75 4p 3.12 3.33
3s 3.64 3.75 4 2.30 2.30 2.33
4d 2.82 2.85 5p 2.15 2.23
4s 2.11 2.11 5f 1.64 1.62
5d 1.87 1.87 6p 1.49 1.52
5¢ 1.47 1.53 1.52 6f 1.32 1.20
5s 1.43 1.38 6 1.02 1.09 1.10

with that of the author’s earlier results in Ref. 3.
These were based on the knowledge of only the
simplest periodic orbit, (+-) of length 2 and &
=27, and were only meant as a crude trial. There
is clearly a vast improvement both in the accur-
acy of the numbers and the completeness of the
results.
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