¹H. Haken, *Synergetics* (Springer, Berlin, 1978). ²E. Schrödinger, Phys. Z. <u>16</u>, 289 (1915); H. A. Kramers, Physica (Utrecht) <u>7</u>, 284 (1940); D. A. Darling and A. J. F. Siegert, Ann. Math. Statist. <u>24</u>, 624 (1953); E. W. Montroll and K. E. Schuler, Adv. Chem. Phys. <u>1</u>, 361 (1958); R. Landauer and J. A. Swanson, Phys. Rev. <u>121</u>, 1668 (1961).

³R. L. Stratonovich, *Topics in the Theory of Random Noise* (Gordon and Breach, New York, 1963), Vol. I, Chap. 4; G. H. Weiss, in *Stochastic Processes in Chemical Physics*, edited by I. Oppenheim, K. E. Schuler, and G. H. Weiss (MIT, Cambridge, Mass., 1977), p. 361.

⁴H. Risken and H. D. Vollmer, Z. Phys. <u>201</u>, 323 (1967); M. O. Scully and W. E. Lamb, Jr., Phys. Rev. <u>159</u>, 208 (1967); R. D. Hempstead and M. Lax, Phys.

Rev. <u>161</u>, 350 (1967); Y. K. Wang and W. E. Lamb, Jr., Phys. Rev. A 8, 873 (1973).

^bM. M-Tehrani and L. Mandel, Phys. Rev. A <u>17</u>, 677 (1978); F. T. Hioe, Surendra Singh, and L. Mandel, Phys. Rev. A 19, 2036 (1979).

⁶Surendra Singh and L. Mandel, Phys. Rev. A <u>20</u>, 2459 (1979).

⁷L. Mandel, Rajarshi Roy, and Surendra Singh, in Optical Bistability, edited by C. M. Bowden, M. Ciftan, and H. Robl (Plenum, New York, to be published).

⁸A. Politi, Lett. Nuovo Cimento <u>27</u>, 535 (1980); F. T. Arecchi and A. Politi, to be published.

⁹J. A. Abate, H. J. Kimble, and L. Mandel, Phys. Rev. A <u>14</u>, 788 (1976).

¹⁰M. Sargent, III, M. O. Scully, and W. E. Lamb, Jr., *Laser Physics* (Addison-Wesley, Reading, Mass., 1974).

Efficiency Factors in Mie Scattering

H. M. Nussenzveig^(a)

Cooperative Institute for Research in the Environmental Sciences, Boulder, Colorado 80309, and National Center for Atmospheric Research, Boulder, Colorado 80307

and

W. J. Wiscombe

National Center for Atmospheric Research, Boulder, Colorado 80307 (Received 22 May 1980)

Asymptotic approximations to the Mie efficiency factors for extinction, absorption, and radiation pressure, derived from complex-angular-momentum theory and averaged over $\Delta\beta \sim \pi$ (β =size parameter), are given and compared with the exact results. For complex refractive indices $N=n+i\kappa$ with $1.1 \leq n \leq 2.5$ and $0 \leq \kappa \leq 1$, the relative errors decrease from $\sim (1-10)\%$ to $\sim (10^{-2}-10^{-3})\%$ between $\beta = 10$ and $\beta = 1000$, and computing time is reduced by a factor of order β , so that the Mie formulae can advantageously be replaced by the asymptotic ones in most applications.

PACS numbers: 42.20.Gg, 42.68.Vs

The Mie efficiency factors¹ for extinction (Q_{ext}) , absorption (Q_{abs}) , and radiation pressure (Q_{pr}) are just the corresponding cross sections divided by the projected area πa^2 of the scattering sphere. These quantities are important in many applications. Typical size parameters $\beta = ka$ (k = wave number, a = droplet radius) range from $\ll 1$ up to $\sim 10^4$, with complex refractive indices $N = n + i\kappa$, $1.1 \le n \le 1.9$, $10^{-9} \le \kappa \le 1$. The efficiencies vary extremely rapidly² with β , n and κ ; but in most applications one is only interested in means $\langle Q \rangle$ over some range $\Delta\beta$, not in this high-frequency "ripple."

Evaluation of the exact Mie expressions¹ requires summing ~ β partial waves. Upon integration across size or wavelength with a step fine enough to resolve the ripple ($\Delta\beta \leq 0.01-0.1$), one is faced with exorbitant computation times. Approximations¹ based on geometrical optics and classical diffraction theory do not have the required accuracy until β exceeds several thousand (cf. below). Clearly, better approximations, devoid of ripple, are needed.

The complex-angular-momentum theory of Mie scattering³ can furnish such approximations. By a simple extension of previously developed techniques,^{4, 5} we find for the extinction efficiency,

$$Q_{\text{ext}} = 2 + 1.9923861\beta^{-2/3} + 8 \operatorname{Im} \left\{ \frac{1}{4} (N^2 + 1)(N^2 - 1)^{-1/2}\beta^{-1} - N^2(N + 1)^{-1}(N^2 - 1)^{-1} \left[1 + \frac{i}{2\beta} \left(\frac{1}{N-1} - \frac{N-1}{N} \right) \right] \beta^{-1} \right. \\ \left. \times \exp[2i(N-1)\beta] - \frac{1}{2}(N-1) \sum_{j=1}^{\infty} \left[j - \left(\frac{N-1}{2} \right) \right]^{-1} \left(\frac{N-1}{N+1} \right)^{2j} \right. \\ \left. \times \exp[2i(N-1+2jN)\beta] \right\} - 0.7153537\beta^{-4/3} - 0.3320643 \\ \left. \times \operatorname{Im} \left[e^{i\pi/3} (N^2 - 1)^{-3/2} (N^2 + 1)(2N^4 - 6N^2 + 3) \right] \beta^{-5/3} + O(\beta^{-2}) + \text{ripple.}$$
(1)

To obtain the average absorption efficiency $\langle Q_{abs} \rangle$ over $\Delta \beta \sim \pi$, one applies the modified Watson transformation³ to the corresponding Mie series expansion^{1,2} and then takes the average over $\Delta \beta$. The result⁶ is

$$\langle Q_{abs} \rangle = \langle Q_{abs} \rangle_F + \langle Q_{abs} \rangle_{a,e_{\bullet}} + \langle Q_{abs} \rangle_{b,e_{\bullet}}, \qquad (2)$$

$$\langle Q_{abs} \rangle_F = \sum_{\lambda=1}^{z} \int_0^{\pi/2} \varphi(r_{j\lambda}) \sin\theta \, \cos\theta \, d\theta \,, \tag{3}$$

$$\langle Q_{abs} \rangle_{a,e} = 2^{-1/3} \beta^{-2/3} \sum_{\lambda=1}^{2} \int_{0}^{x_a} \varphi(r_{j\lambda}^{+}) dx,$$
 (4)

$$\langle Q_{abs} \rangle_{b.e.} = 2^{-1/3} \beta^{-2/3} \sum_{\lambda=1}^{2} \int_{0}^{x_{b}} \left[\varphi(r_{j\lambda}) - \varphi(\tilde{r}_{j\lambda}) \right] dx,$$
(5)

where

$$\varphi(r_{j\lambda}) = (1 - e^{-b})(1 - r_{2\lambda})/(1 - r_{1\lambda}e^{-b}),$$
(6)

and $r_{2\lambda}$ and $r_{1\lambda}$ are, respectively, the external and internal reflectivities for polarization λ , given by

$$r_{j\lambda} = |R_{j\lambda}|^2, \quad j,\lambda = 1,2; \quad R_{j\lambda} = (-1)^j (z_j - ue_\lambda)/(z + ue_\lambda); \tag{7}$$

$$z = \cos\theta, \ u = N \cos\theta', \ \sin\theta = N \sin\theta',$$
(8)

$$e_1 = 1, e_2 = N^{-2}, z_1 = z, z_2 = \begin{cases} z \text{ for Eq. (3)} \\ z^* \text{ for Eqs. (4) and (5),} \end{cases}$$

and

$$b = 4\beta \operatorname{Im}(N \cos\theta' + \theta' \sin\theta).$$

 θ' is the *complex* angle of refraction corresponding to the angle of incidence θ . [(8) is just Snell's Law.] $r_{j\lambda}$ are the Fresnel reflectivities $(r_{2\lambda} = r_{1\lambda})$, and b is the damping exponent along a *complex* shortcut through the sphere. Thus (3) is an improved version of the geometrical-optic¹ result.

The terms (4) and (5) represent the contribution from the edge domain³ (a.e. = above edge; b.e. = below edge); $r_{j\lambda}^{\pm}$ is obtained from $r_{j\lambda}$ by the substitution

$$z \to z^{\pm} = -(2/\beta)^{1/3} e^{i\pi/6} \operatorname{Ai}'(\pm x e^{2i\pi/3}) / \operatorname{Ai}(\pm x e^{2i\pi/3}),$$
(10)

where Ai is the Airy function, θ is related to x by

- 1- - 1-

$$\sin\theta = 1 \pm 2^{-1/3} \beta^{-2/3} x \ (+ \text{ in a.e.}; - \text{ in b.e.})$$
(11)

[with corresponding changes in the derived quantities (8) and (9)], and the limits of integration are

$$x_a = 2^{1/3}(n-1)\beta^{2/3}, \quad x_b = (\beta/2)^{2/3}.$$
 (12)

Finally, in (5), $\tilde{r}_{j\lambda}$ is obtained from $r_{j\lambda}$ by the substitution

$$z^{-} \rightarrow (2/\beta)^{1/3} x^{1/2}.$$
 (13)

1491

(9)

FIG. 1. (a) Three-dimensional plot of $\langle Q_{ext} \rangle$ for n = 1.33, $10^{-5} \le \kappa \le 1$, $10 \le \beta \le 10^3$. The numbers attached to surface represent values of $\langle Q_{ext} \rangle$. (b) Level curves for the logarithm of the percentage errors of the asymptotic approximation to $\langle Q_{ext} \rangle$. Negative values (errors <1%) are shown by dotted lines. (c) Same as (a) for $\langle Q_{abs} \rangle$. (d) Same as (b) for $\langle Q_{abs} \rangle$. (e) Same as (a) for $\langle Q_{pt} \rangle$. (f) Same as (b) for $\langle Q_{pt} \rangle$.

The average radiation-pressure efficiency is given by⁶

$$\langle Q_{\rm pr} \rangle = \mathbf{1} - \langle w_g \rangle_F - \langle w_g \rangle_{\rm a.e.} - \langle w_g \rangle_{\rm b.e.}, \tag{14}$$

$$\langle w_g \rangle_F = \operatorname{Re} \sum_{\lambda=1}^{\infty} \int_0^{\pi/2} d\theta \, \sin\theta \, \cos\theta \, e^{-2i\theta} \Big[- |R_{2\lambda}|^2 + |1 - (R_{2\lambda})^2|^2 (1 + f_2 |R_{1\lambda}|^2 e^{-b})^{-1} f_2 e^{-b} \Big], \tag{15}$$

$$\langle w_g \rangle_{a_*e_*} = 2^{-1/3} \beta^{-2/3} \operatorname{Re} \sum_{\lambda=1}^2 \int_0^{x_a} (\rho_{\lambda}^+ - \tau_{\lambda}^+ + 1) \, dx,$$
 (16)

$$\langle w_{g} \rangle_{b,e_{\bullet}} = 2^{-1/3} \beta^{-2/3} \operatorname{Re} \sum_{\lambda=1}^{2} \int_{0}^{x_{b}} [(\rho_{\lambda}^{-} - \hat{\rho}_{\lambda}^{-}) - (\tau_{\lambda}^{-} - \hat{\tau}_{\lambda}^{-})] dx, \qquad (17)$$

where

$$\rho_{\lambda} = f_1(z) R_{2\lambda} * R_{2\lambda}',$$
(18)

$$\tau_{\lambda} = f_1(z) f_2 e^{-b} (1 + R_{1\lambda}^*) (1 + R_{1\lambda}') (1 + R_{2\lambda}^*) (1 + R_{2\lambda}') (1 + R_{1\lambda}^* R_{1\lambda}' f_2 e^{-b})^{-1},$$
(19)

$$f_1(z) = (1 + iz^*)/(1 - iz), \quad f_2 = e^{-2i\theta'},$$
(20)

$$R_{j1}' = (f_j)^{-1} [N^2 z_j - u + (-1)^j i M^2] (N^2 z + u + i M^2)^{-1},$$
(21)

$$R_{j2}' = (f_j)^{-1} [(N^2 + M^2)z_j - u + (-1)^j i M^2 (1 - uz_j)] [(N^2 + M^2)z + u + i M^2 (1 + uz)]^{-1},$$
(22)

with $M^2 = N^2 - 1$. In all quantities with (±) upper indices, the substitutions (10) and (11) are understood. Finally, $\hat{\rho}_{\lambda}^{-}$ and $\hat{\tau}_{\lambda}^{-}$ are obtained from $\rho_{\lambda}^{-}, \tau_{\lambda}^{-}$ by the substitution

$$z^{-} \rightarrow (2/\beta)^{1/3}(\sqrt{x} + i/4x).$$
 (23)

Again, (15) represents an improved version of the geometrical-optic⁷ result, while (16) and (17) represent above-edge and below-edge corrections.

We have made detailed comparisons⁶ between the exact Mie results (suitably averaged to eliminate the ripple⁸) and the above asymptotic approximations⁹ over the ranges $10 \le \beta \le 5000$, $0 \le \kappa \le 1$, for n = 1.10, 1.33, 1.50, 1.90, and 2.50. Results for n = 1.33 and $10 \le \beta \le 1000$ are shown in Fig. 1.

Figure 1(a) is a three-dimensional plot of $\langle Q_{ext} \rangle$. The oscillations arise form interference between diffracted and transmitted light, and they are damped out as $\kappa\beta$ increases. Figure 1(b) shows level curves for the logarithm of the percentage error of approximation (1). Negative values (errors <1%) are shown by dotted lines. Thus the relative error falls below 1% already at $\beta \ge 15$, it is $\le 0.1\%$ at $\beta \ge 70$, $\le 0.01\%$ at $\beta \ge 200$, and $\le 10^{-3}\%$ at $\beta \ge 10^{3}$.

Figures 1(c) and 1(d) show similar plots for $\langle Q_{abs} \rangle$, and Figs. 1(e) and 1(f) for $\langle Q_{pr} \rangle$. The relative errors are somewhat greater than for $\langle Q_{ext} \rangle$ and are the worst for $\langle Q_{pr} \rangle$, where one must have $\beta \ge 90$ to achieve better than 1% error.

The accuracy improves not only as β increases, but also as *n* increases. Previously known approximations (based on geometrical optics and classical diffraction theory) have an accuracy that is almost independent of *n* and that only reaches 1% at β =1000 and (0.2–0.5)% at β =5000.

The computing time is reduced relative to exact Mie computations roughly by a factor of $O(\beta)$, and it is only about twice that for geometrical-optic approximations.

Besides the improvement to the geometricaloptic-type contributions, the main asymptotic corrections arise from the edge domain. Their functional form is quite similar to the geometrical-optic one, extended to complex angles of incidence and refraction. Thus, as was found in previous discussions,³ the edge effects represent a kind of analytic continuation of ray optics to complex paths, where diffraction corresponds to barrier penetration. Similar interpretations have been suggested in atomic,¹⁰ nuclear,¹¹ and particle¹² physics.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

^(a)Permanent address: Instituto de Fisica, Universidade de São Paulo, 01000 São Paulo, Brazil.

¹H. C. van de Hulst, *Light Scattering by Small Particles* (Wiley, New York, 1957).

²W. M. Irvine, J. Opt. Soc. Am. <u>55</u>, 16 (1965).

³Cf. H. M. Nussenzveig, J. Opt. Soc. Am. <u>69</u>, 1068 (1979), and references therein.

⁴H. M. Nussenzveig, J. Math. Phys. <u>10</u>, 82, 125 (1969).

 $^5\mathrm{V}.$ Khare, Ph.D. thesis, University of Rochester, 1975 (unpublished).

⁶H. M. Nussenzveig and W. J. Wiscombe, to be published.

⁷P. J. Debye, Ann. Phys. 30, 57 (1909).

⁸The Mie computations were performed using algorithms of Wiscombe [Appl. Opt. 19, 1505 (1980)]. Highfrequency ripple was removed from the Mie data by least-squares quartic spline fitting with knots every $\Delta\beta\simeq 10~{\rm for}~Q_{\rm abs}$ and $Q_{\rm pr},$ and by low-pass filtering for

 Q_{ext} . ⁹A fairly well-tested set of computer routines for calus (W.J.W.) upon request.

¹⁰J. N. L. Connor and W. Jakubetz, Mol. Phys. 35, 949 (1978); S. Bosanac, Mol. Phys. 35, 1057 (1978).

¹¹R. C. Fuller and P. J. Moffa, Phys. C <u>15</u>, 266 (1977). ¹²B. Schrempp and F. Schrempp, Phys. Lett. <u>70B</u>, 88 (1977); Centre Européen de Recherches Nucléaires Report No. CERN-TH 2573, 1978 (to be published).

FIG. 1. (a) Three-dimensional plot of $\langle Q_{ext} \rangle$ for n = 1.33, $10^{-5} \le \kappa \le 1$, $10 \le \beta \le 10^3$. The numbers attached to surface represent values of $\langle Q_{ext} \rangle$. (b) Level curves for the logarithm of the percentage errors of the asymptotic approximation to $\langle Q_{ext} \rangle$. Negative values (errors <1%) are shown by dotted lines. (c) Same as (a) for $\langle Q_{abs} \rangle$. (d) Same as (b) for $\langle Q_{abs} \rangle$. (e) Same as (a) for $\langle Q_{pt} \rangle$. (f) Same as (b) for $\langle Q_{pt} \rangle$.