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Scalar Mesons in 77 and KK: Results of a Unitary Amplitude Analysis
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The mr —~KK S wave has been extracted from an amplitude analysis of KK production.
With use of unitarity constraints, evidence has been found for a resonance in rr —~EKK at
1425+ 15 MeV/¢? having a width 160+ 30 MeV/cz; this state is a likely candidate for the
Q®Q, JYC=0"" nonet. It is shown that the S*(980), which is a background to this resonance,
must be a very broad effect and is likely a KK virtual bound state.

PACS numbers:

The spectrum of scalar mesons has never been
clearly resolved, and theoretical expectations of
two-quark, four-quark, and gluonium states in
this sector make the experimental study of J¥¢
=0** states a central issue in light-quark spec-
troscopy. In this paper we present evidence for
an /=0 scalar-meson resonance in the 77 — KK
S-wave amplitude, with mass 1425+ 15 MeV/c?
and width 160+ 30 MeV/c®. The measured 77
- 7mm elastic S-wave phase shifts suggest that this
state couples mainly to 77, and we refer to it
henceforth as €(1425). As a by-product of our
study, we show that the $*(980) cannot consistent-
ly be described as a narrow resonance, but is
either a very broad state or a KK virtual bound
state. The key ingredients in our analysis are,
first, the behavior of the 77 — KK S-wave phase
as determined from our experiment, and second,
the unitarity constraints on the coupled-channels
S matrix.

Historically, Morgan’s' classification of scalar
mesons involved very broad k (~1200) and €
(=~ 1300) states together with narrower (I' =200
MeV) 6(980) and S*(980) resonances. The mass
spectrum and mixing angle seemed unnatural,
leading Jaffe® to suggest that some of these ob-
jects were, in fact, four-quark states with very
broad widths, and that the genuine Q@ nonet
should appear in the 1200-1600-MeV/c? range.
The subsequent clarification of the I =% S-wave
Km - Kn scattering amplitude by Estabrooks et al.?
lent support to Jaffe’s model. The K7 phase shifts
show a rapid advance above 1400 MeV/c2?, suggest-
ing a relatively narrow « (~1500) resonance super-
imposed on a broad background. Similarly, the
observation of a peak in the KK S-wave production
cross section*'® near 1300 MeV/c? suggested a
nonstrange companion to the «(1500), but the cor-
relation between phase and intensity seemed in-
consistent with a simple resonance. In a prelimi-
nary analysis,” we showed that this enhancement
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occurred mainly in the 7=0 S wave. In this paper
we explain the correlation between phase and in-
tensity in terms of the $*(980) and the €(1425).
We have extracted the 77 — KK amplitudes from
an analysis of the reactions 7" p~K " K*n and 7*n
-~ K K*p (160000 events) at 6 GeV/c, measured
with the Argonne National Laboratory effective-
mass spectrometer.® The details of this analysis
are reported elsewhere.” To summarize the work
of Ref. 7, we have used spin-coherence assump-
tions valid for m-exchange dominance to extract
the unnatural—parity-exchange (UPE) amplitudes
for production of S, P, and D KK waves with 7 =0
and 1. To resolve discrete ambiguities, we have
chosen a solution which uniquely satisfies the fol-
lowing physical requirements: (1) The charge-
symmetric reactions T'n ~K K*p and 7" p~K Kgn
(from Ref. 4) have the same mass and ¢ depen-
dence in the S and D waves; (2) the S waves in
T"p~K K'n andn*n~K K'p extrapolate to the
same values at the pion pole; (3) the ¢ dependenc-
es (e, witha=11) of the /=0 S and D waves and
I=1 P wave are consistent with 7 exchange,
while the =1 S and D waves and /=0 P waves
show behavior (%, with @ =3.5) similar to that
in B-exchange reactions (e.g., UPE in 7" p - wn
and 7" p ~A,%); (4) the P waves are consistent
in magnitude and phase with the expected tails
of the p(770) and w(783) resonances. We have
used the assumed Breit-Wigner behavior of both
the P and D waves to constrain the overall S-
wave phases, and we have repeated the analysis
intwot intervals (=¢<0.08 GeV? and 0.08 < —¢
<0.20 GeV?) with consistent results. The follow-
ing discussion is based on the data from the —¢
<0.08 GeV? interval. Finally, we have checked
for stability against the spin-coherence assump-
tion by introducing a resonant /=1 S wave pro-
duced by Z exchange, as proposed by Martin and
Ozmutlu® in an analysis of the reaction 77 p
- K K%, our results for the 7- and B-exchange
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FIG. 1. Modulus of the S-wave mr — KK scattering
amplitude T (rm —~KK). The curves show the moduli of
the S* background (I'®) and the €(1425) resonance (TR),
from decomposition described in the text.

S waves are insensitive to the inclusion of such
an effect.

The modulus of the I=0, 77 — KK S wave (see
Fig. 1) shows an S*-associated peak near thresh-
old and a broad shoulder centered at 1300 MeV/c2.
Using a polynomial parametrization, we have ob-
tained the smoothed Argand plot shown in Fig.
2(a). The speed, |dT @m —~ KK)/dM| in Fig. 2(b),
shows a peak at 1425 MeV/c? with a width of =~ 160
MeV/c? (for constant background, the speed as-
sociated with a resonance should vary with mass
like a Breit-Wigner intensity). Note that the large
S*-related background amplitude, which has a
~190° phase, causes the €(1425) to appear upside
down on the Argand plot.

The critical untested assumption in our analy-
sis is that 77 and KK are the dominant channels
for the =0 S wave, and that other channels (op,
TA,,...) are unimportant below 1500 MeV/c?.
For the two-channel case, the amplitude for 77
~ KK has the form

T(m - KK) =31 = ?)2 expli (6, +64)], 1)

where 6, and 6, are the elastic 77 and KK phase
shifts. If the two-channel T matrix is decom-
posed into a Breit-Wigner resonance plus unitary
background, T =T® +T2, then unitarity provides
the important constraint®

@m - KK) =6,8 +6,2 +6%, @)

where @@ - KK) is the phase of T (nm - KK),

o,,%" are the elastic phase shifts that describe
TE, and 6% =6,% +6,F is the Breit-Wigner phase
[=arg(M , - M +iT/2)] associated with 7%. Note
that neither the background elasticity () nor the
relative couplings of the resonance enter Eq. (2).
Thus, in the absence of other channels, we expect
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FIG. 2. (a) Argand plot for mr = KK from a smooth
polynomial parametrization. (b) Speed, as deduced
from the Argand plot in (a).

@(mm — KK) to show a ~180° phase advance for
each resonance, superimposed on a smooth back-
ground phase.

Figure 3(a) shows smooth interpolations of the
“A” and “B” 77 elastic phase shifts found by Esta-
brooks and Martin,'® together with solution B of
Pennington and Martin.!* The latter solution most
closely matches the “unique” 77 amplitudes re-
ported by Becker et al.,'? in particular the rapid
falloff of the mm —mm S-wave magnitude above 1400
MeV/c?. Inthe region from 1200 to 1600 MeV/c?,
both 6, in Fig. 3(a) and ¢ (7 - KK) in Fig. 3(b)
show similar phase advances of =100°; the KK
elastic phase shift, obtained by subtracting 6,
from @@m ~KK), is stationary in this region [Fig.
3(c)]. Thus we conclude that the €(1425) couples
mainly to 77 and has a negligible effect on &; it
causes essentially the same phase advance in 0,
and in (7 ~ KK), as prescribed by Eq. (2). The
curve in Fig. 3(b) is based on a fit to @7 - KK)
in terms of the €(1425) mass and width and the

~ background phase shifts 8,” and 6,®; the dashed

curve in Fig. 3(a) shows the prediction for 6,
from this fit.

The effects of the $*(980) can be seen in the re-
gion below 1300 MeV/c?. Near KK threshold, &,
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FIG. 3. (a) Smooth interpolations of measured 7w
phase shifts (modulo 180°) from Refs. 10 (curves A and
B), 11 (curve B), and 12 (data points); the dashed curve
shows 0, predicted from our fit to ¢(mr—~EKK). (b) Mea-
sured ¢ (rmr —~KK) from our amplitude analysis with fit-
ted curve. (c) KK— KK elastic phase shifts correspond-
ing to the various 6, solutions.

increases rapidly by 180°, while 6, decreases to
= —80°, leaving ¢ (mm - KK) essentially stationary
below 1300 MeV/c?. The rapid variations in 6,
and 6, above KK threshold can be attributed to a
rapid increase in the ratio I'(S* - KK)/I'(S*~nm),
which causes the KK - KK elastic amplitude to
move quickly to the top of its Argand plot. The
fact that 6 does not return to 0°, and the fact
that ¢ (mm - KK) does not show the Breit-Wigner
phase advance expected from Eq. (2), both argue
that the S* total width [given mainly by I'(S*

—~ KK)] must become very broad above KK thresh-
old. We have parametrized the S* effect as a vir-
tual KK bound state (see Ref. 1) to obtain the de-

scription of 8, and ¢(mm — KK) shown by the curves

in Figs. 3(a) and 3(b).

While the phase behavior gives direct informa-
tion on the mass and width of the S* and €(1425),
the modulus of the 77 — KK amplitude is a delicate
convolution of the $* and the €(1425). Regarding
the S* as a background to the €(1425) resonance,
we have used the formalism of Coulter'® to derive
the following unitarity constraints on the ampli-

tude T =72 +T*®.

| T (rm ~ KK)| = (¢ yx )3 sin(6% +6)| , (3a)
[T (m - KK)| = (¢ yx )2 sing, (3b)
| TR @ ~ KK)| = (¢ )12 sin(6%), (3c)

where x, ¢ are the €(1425) branching fractions
Ty, /T, and 6 is a unitarity phase, 0<6 <7,
The relative 77 : KK coupling sign for €(1425) is
related to the quadrant of 6; 8 <n/2 (6>7/2) cor-
responds to a + (-) sign. Thus, for positive coup-
ling, any background in 77 - KK necessarily shifts
the €(1425) peak in | T (7 - KK)| to a lower mass.
Furthermore, if | T®| falls with mass, then the
phase 6% +0 tends to remain stationary, broaden-
ing the resonance peak. Although our analysis
does not determine | 73| uniquely, a typical de-
composition into resonance and background is
shown in Fig. 1, where the coupling (x,x ,)'/? var-
ies smoothly with mass. The 1300-MeV/c? en-
hancement is seen to be a distortion of the €(1425)
for which we obtain a possible range of couplings
0.28 < (x yx ¢)'/* < 0.40, with positive coupling sign.

In conclusion, by taking proper account of uni-
tarity constraints, we have shown that the 77
-~ KK amplitude behaves like a superposition of a
broad $* background and the €(1425) resonance.
The 1300-MeV/c? enhancement in KK is a convolu-
tion of these two effects. The €(1425) shows clear
Breit-Wigner behavior with I' =160+ 30 MeV/c?,
whereas the $* does not. Thus we conjecture that
the €(1425), not the $*(980), is a likely compan-
ion of k(1500) in a Q@ scalar nonet. The coupling,
0.28 < (x,x x)'/* < 0.40, may be compared with the
value 0.40 expected for an ideally mixed u# + dd
I=0 state. Better data on the 77 phase shifts
would aid in confirming our analysis, as would
identification of additional 7=1 (ud) and I=0 (s5)
states in the 1300-1600-MeV/c? region.
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Dynamic Influence of Valence Neutrons upon the Complete Fusion of Massive Nuclei
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Excitation functions for complete fusion of *8Ni +8Ni, %Ni+5Ni, and ®Ni +®Ni have
been determined over a range of energies from just above to well below the fusion bar-
rier. The response of these excitation functions to the addition of valence neutrons is
found to be surprisingly complex. We suggest that at least part of the observed varia-
tions may be due to dynamic, single-particle effects.

PACS numbers: 25.70.Bc, 21.60.Cs

Measurements of cross sections for complete
fusion at near-barrier and subbarrier energies
provide basic information on the large-scale be-
havior of nuclear matter and on the influence up-
on this behavior of the underlying nuclear struc-
ture. In addition to providing data for testing
various interaction potentials and probing (in
principle) the nuclear potential at the inner side
of the interaction barrier, such measurements
may provide insight into a number of predicted
static and dynamic aspects. Theoretical predic-
tions which have been made include the occur-
rence of Coulomb distortions, rotations, and the
excitation of vibrational states,'”® of quantal os-
cillations,* and the influence of nuclear stiffness®
and static deformations.® Recent experimental in-
vestigations,” ? involving *°O to *°Ca projectiles,
have revealed the presence of substantial subbar-
rier penetration, These data have been used to
test for the predicted influence of static deforma-
tions with suggestive, although somewhat incon-
clusive, results,'®!?

In this Letter we present results of measure-
ments of complete-fusion excitation functions for
58Nj +%8Ni, %®Ni+%Ni, and *Ni+*Ni at near-bar-
rier and subbarrier energies. These Ni systems
involve more massive projectiles than used pre-
viously and comprise a triad of massive, nearly
closed-shell symmetric, target-projectile com-
binations. We find that the response of the Ni-Ni
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excitation functions to the addition of valence neu-
trons is complex, more so than observed in sys-
tems involving lighter projectiles. We then sug-
gest that at least part of the observed variations
may be due to dynamic, single-particle effects.
In order to determine the excitation functions
we measured evaporation residue differential
cross sections using the Massachusetts Institute
of Technology—Brookhaven National Laboratory
(MIT-BNL) velocity selector together with a gas
AE-E telescope. The use of a velocity selector'?
makes possible the high-precision, near-barrier
and subbarrier measurements which cannot be
made by systems which are limited by the intense
elastic scattering from going to sufficiently for-
ward scattering angles. The experiments were
performed using 187-220-MeV °®Ni and 171-215-
MeV *Ni beams provided by the BNL Tandem
Van de Graaff Facility to bombard isotopically
enriched 70-225-ug/cm? 58Ni and ®*Ni targets.
Two silicon surface-barrier detectors placed
at 22° angles to the beam axis were used for
beam monitoring and normalization. The veloc-
ity selector system consisted of a quadrupole
doublet, an electrostatic deflector, the velocity
selector proper, and a second quadrupole doublet.
The gas AE-E telescope was placed at the image
of the second quadrupole. The AE section con-
sisted of a proportional chamber containing iso-
butane at 20 mm Hg and the E counter was a 450
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