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Electron spin relaxation measurements on low-spin Fe3 in several proteins show that
they occupy a space of fractal dimensionality d = 1.65+ 0.04, in conformity with the dim-
ensionality d =

y of a self-avoiding random walk. Analysis of myoglobin x-ray data inde-
pendently confirms this fractal dimension.

PACS numbers: 87.15.By, 63.50.+x, 76.30.-v

We report the temperature dependence of the
electron spin relaxation rate of low-spin Fe'' in
myoglobin azide (MbN, ) and ferricytochrome c
(CC). We also reanalyze other relaxation data
from two low-spin hemoproteins: cytochrome
P-450 from pseudomona. s putida (CP 450), origi-
nally reported by Herrick and Stapleton' (denoted
by I), and CC.' All systems have been studied
as frozen aqueous solutions, but single crystals
were used in the earlier CC work. ' Unlike its
high-spin counterpart, low-spin iron has no low-
lying excited electronic states. . The direct and
Raman relaxation rates, which in three-dimen-
sional materials vary with temperature T as AT
and CT', respectively, are therefore not masked
by an Orbach (resonant Raman) process. ' The
temperature dependence of the Raman rate meas-
ures the density of states in the vibrational spec-
trum of the material. All our relaxation data
are consistent with a Raman rate of the form
CT """,with C a constant. The density p(~)
of vibrational states therefore varies with fre-
quency as ~'""".We deduce that the protein
has the form of a fractal4 of dimensionality 1.65
x 0.04. Within the experimental uncertainties this
is identical with the fractal dimensionality d=+
of the self-avoiding random walk (SAW), 4 to which
the protein backbone bears a marked resemblance.

The relaxation rates of MbN, and CC were
measured directly at 9.5 GHz between 1.5 and 10
K with use of the pulse saturation and recovery
technique, with a superheterodyne receiver and
fast microwave diode switches. These measure-
ments were limited to rates under 10' s '. The

temperature readout and control were accurate
to a few' millidegrees Kelvin. More experimental
details are given in I. Data of Mailer and Taylor
for CC were obtained by measuring the phase lag
of the magnetic resonance signal under conditions
of adiabatic fast passage. ' These measurements
yielded relaxation rates at temperatures between
11 and 18 K.

The Raman relaxation mechanism is a two-
phonon process in which a paramagnetic spin flips;
one quantum of vibrational energy at +, is de-
stroyed and another at &u, created, with h(&u, —u, )
= gp, &II. At temperatures for which this mechan-
ism is dominant over the direct (one-phonon)
relaxation mechanism one can take ~, = a, to ob-
tain the temperature dependence of the Raman
rate as

p'(~) ~ f(a~/k T)d~,
T~R

with p(~) the density of vibrational states and f(s)
=e'/(e' —1)'. The creation of one, and the de-
struction of another, vibrational quantum intro-
duces two of the four powers of &u into Eq. (1).
The remaining two powers must be present if the
interaction is electrostatic in nature and the ion
possesses an odd number of electrons. '

If we postulate a power law p(~) ~~~ for the
density of states, the Raman rate of Eq. (1) must
vary with temperature T as

(2)

Here 8=—hcu, „/k and I;„~(8/T) is a function
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which is constant for T «8 and varies as T ~''~
in the classical two-phonon limit where T»e.
In a, three-dimensional solid, p = 2. Equation (2)
then predicts a T' Raman rate at low tempera-
tures and a T' rate at high temperatures. This
T' dependence is well established experimental-
ly"' for crystals containing dilute concentrations
of paramagnetic ions with an odd number of elec-
trons. Low-spin Fe'' in potassium cobalticyanide
exhibits a dependence of this type. "

The case of hemoproteins is unusual. Herrick
and Stapleton' point out that the Raman rate up
to 13 K follows closely a temperature dependence
given by T'F,(75/T). This corresponds to a two-
dimensional density of states (p =1) with a suffi-
ciently low value of 8 that F,(75/T) drops by
63gp between 4.2 and 12.9 K. This reduces the
logarithmic derivative of T'F, (75/T) from 7.0
(the low-temperature limit) to 4.4 at 13 K, and
to 3.6 at 17.6 K. The planar structure of the
heme group was suggested as the origin of this
temperature dependence. It was assumed that 6
varied among hemoproteins, and that a higher
value than 75 K would be required for CC in order
to explain the strict power-law dependence of 1/
T, R even at 18.5 K.'

Relaxation data for CP450, Mbw„and CC are
shown in Fig. 1 with the power laws which best fit
the Raman rates. The CC relaxation rates be-
tween 11 and 18 K, indicated by crosses and ob-
tained from Ref. 2, have been reduced by a factor
of 0.106 to bring them into agreement with our
pulse saturation data so that an overall tempera-
ture dependence of T '4 could be measured. The
dashed line falling below the crosses in Fig. 1 is
a high-temperature extrapolation of the best fit
utilizing the two-dimensional model [Eq. (2) with

p = I] and our CC pulse-saturation data. The cor-
responding value of 6 is 66.7+4.1 K. Similar fits
of the MbN3 and CP450 data yield 6=73.1+3.1 K
and 75.0+1.5 K, respectively. "

Blum and Qhnishi" report power saturation
studies on ferricytochrome c and fit their data
between 6 and 25 K to a g" law. Pulse satura-
tion studies on a nonheme, iron-sulfur protein"
yielded relaxation rates varying with tempera-
ture as 0.9 &&T2+3.5 &&10 "xT'F, (60/T) between
1.5 and 12 K. This value of 6=60 K should be
compared with 57.5 K used in fitting our CP450
data to a p = 2 model. "

These studies demonstrate that below 15 K re-
laxation rates can be explained by standard mod-
els with p equal 1 or 2 only if one assumes a low
0 which varies only slightly from protein to pro-
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FIG. 1. The electron spin relaxation rate of low-
spin Fe in three hemoproteins, from this work and
beefs. 1 and 2. The rates are fitted to the sum of a
direct process, varyirg as T, and the Haman process
corresponding to a fractional dimensionality of ap-
proximately &5.

tein. However, in those proteins for which meas-
urements have been made to higher temperatures,
a simple power-law behavior is maintained, in
contradiction to the assumption. This is true for
proteins with and without planar substructures.

%e infer from these results that the success of
the two-dimensional model proposed in I was
fortuitous, and that the relaxation rates follow a
noninteger-power law. A fit of the Raman data
in Fig. 1 to a T" power law yields n = 6.34 + 0.06,
6.29*0.08, and n=6. 27+0.06 for the CC, MbN„
and CP450 data, respectively. From Eq. (2) we
thus find that all of our pulse-saturation data on
relaxation rates in hemoproteins are consistent
with a density of vibrational states p(&u) at the
Fe'' site which varies with ~ as the 0.65 +0.04
power.

This result can be related in an elegant way to
the form of the protein molecule. Suppose that
an elastic object consists of N identical units of
mass M, linked to form a body which is homo-
geneous and isotropic. Its linear extent L is
given by L"c N, where d is, by definition, the
fractal dimensionality of the object. For a bulk
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The variation of ~ with N can be used to deduce
the state density by means of the following seal-
ing argument. When m objects of size N/m are
linked to make 1V, the minor change of boundary
conditions leaves the density of states unper-
turbed. Thus p„(~) =mp„i (~), in which the sub-
scripts identify the size. Also, if the normal-
mode frequencies vary with m as &u/m", we know

from scaling that p„i (cu) = m p~(&u/m"), so that

p~((d) = m p~((u/m ) . (4)

In these expressions the factor m accomodates
the reduced energy interval between states. On
substituting a density of states p(~) ~ ~ in Eq.
(4), we find p=o. ' —1. Since, from Eq. (3), n
=d ', we have p =d —1 and therefore

p(&u) ~ 4) (5)

Equation (5) reproduces the standard power laws
a', a,nd u' for systems having d = 1, 2, a,nd 3,

respectively. It is more general, however, hold-
ing for arbitrary, even fractional, d as outlined
above.

In its application to proteins the generality is
important. The exponent P = 0.65 + 0.04 in the
vibrational spectrum shows that the protein oc-
cupies a space of fractal dimensionality d =1.65
+ 0.04. This result is remarkably plausible. The
SAW has a theoretical dimensionality" of ~3 as
verified by numerical methods to about 1/0. " Its
non-self-intersecting. character and sinuous back-

/

bone lend the protein form a character noticeably
similar to the SAW. Our relaxation measure-
ments have evidently probed this form through
the way it determines the vibrational spectrum.

The analogy between the protein and the SAW
is open to direct experimental verification with
use of the x-ray data of myoglobin at 250 K."
Figure 2 shows the variation of the number of
alpha carbons with distance, as explained in the

deformation which maps the body into its analog
of volume N(1 —e) the decrease of length is AL
= Le/d; the elastic energy is Nce'/2, with c the
appropriate elastic constant describing each ele-
ment. The deformation is a straight. line along
the axis $ in the configuration space of the N
units, for which the elastic energy is —,'Mu'(',
with ~ the vibrational frequency. Changing to
cyclic boundary conditions for simplicity, so that
each element projects equally on (, we have $'
~N(LL)'~NL'e', and hence, from the two ex-
pressions for the elastic energy,

~ ~(c/M)'i'L '~(c/M)' 'N ' '.
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FIG. 2. The number of alpha carbons (2(N (85)
within a sphere of radius A, subject to the condition
that there exists a path along the backbone from each
alpha carbon to the origin which does not leave the
sphere. The circles are the data for several origins
situated on each of 17 alpha carbons in contact with
the heme plane as well as the alpha carbon nearest
the center of mass of the backbone. Many of the circles
are multiple points. The crosses are the data for one
of the alpha carbons in contact with the Fe3+ ion (No.
64), with use of a smaller step in B. Shown are lines
for dimensions of 1, 2, and (the least-squares fit oQ
1.67.

caption. This figure makes clear that the number
varies approximately as the ~3 power of distance. "
The data with the 64th alpha carbon as the origin,
show a staircase effect, and is found with all
other origins. The data are clearly inconsistent
with fractal dimensions of I or 2. This confirms
that the protein. is a fractal of approximate di-
mension +, thus giving strong independent sup-
port to the analysis of protein vibrations and spin
relaxation presented here.

We note finally that flexing modes probably
dominate the low-frequency spectrum at low tem-
peratures when bond conformational changes are
frozen out. The quantity e simultaneously meas-
ures the bond strain and the correlation factor"
of the SAW for this case. The temperature range
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1-20 K is associated with wavelengths of =10—
10' bonds. Environmental constraints on the back-
bone presumably have only minor effects on these
long-wavelength vibrations, or act alternatively
as additional pinning points of the type that oc-
cur normally in a SAW.
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