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Fully Developed Anisotropic Hydromagnetic Turbulence in Interplanetary Space
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The solar-wind magnetohydrodynamic turbulence is observed to be mainly made of
Alfvenic fluctuations propagating away from the sun. It is shown that such an asymmetric
state is a general consequence of the evolution of developed magnetohydrodynamic tur-
bulence, which, starting from an initial asymmetry between modes with cross helicity
+1 and —1, tends, as a consequence of nonlinear interactions, towards a state where the
only modes left are those initially prevailing (with either cross helicity +1 or —1).

PACS numbers: 96.50.Dj, 96.60.Vg

Theoretical investigations of strong hydromag-
netic turbulence have always dealt so far with the
isotropic case" and most often with the case
where the average magnetic field is zero. '4 In
the latter case, Kraichnan' has derived, using
dimensional arguments, a 0 ' ' power law for the
spectrum of the magnetic and kinetic energy den-
sities of the fluctuations in the stationary state.
The difference in the spectral index with respect
to that of the Kolmogorov spectrum of isotropic
hydrodynamic turbulence is due to the presence,
in the smaller scales, of Alfvdn waves propagat-
ing in the magnetic field of the larger-scale
eddies, thus impeding the energy transfer in this
range of high wave numbers.

Observations of incompressible magnetohydro-
dynamic (MHD) turbulence in the magnetized
plasma of interplanetary space' ' indicate, how-
ever, ' that the existence of these Alfvd'n waves
is not the only peculiar feature of MHD with re-
spect to hydrodynamic turbulence.

On the one hand, the spectral energy density of
magnetic fluctuations E(k) defined by

(5B')/4vp= f F(k) dk (1)

(p being the plasma mass density) seems to follow
a power law E(k) ~k " with a spectral index v

ranging from 1.2 to 2, for frequencies between
10 ' and 10 Hz. Although the scatter of the ob-
served values of v precludes a definite identifica-
tion with either a Kolmogorov or a Kraichnan
spectrum, the observed power law is expected to
result from a nonlinear energy cascade.

5v = + &B/(4 tt p) (2)

the sign depending on the polarity of the average
magnetic field and being such that only Alfvdnic
fluctuations propagating away from the sun are
observed. Notice that, in terms of the so-called
cross helicity of hydromagnetic turbulence, "the
observational result (2) implies that the MHD
turbulence in the solar wind is either in a state
characterized by the value +1 for the cross helic-
ity, or in a -1 state.

It is a simple matter to show that, if condition
(2) is satisfied, there are no longer nonlinear
interactions which is in apparent contrast with the
presence of a spectrum. To see this, we write
the equations for incompressible MHD fluctua-
tions as"

where

1

(
B

)

(4)

and C„=(B)/(4zp)~' is the Alfvenic speed in the
average field (B). The above equations refer to

Qn the other hand, in the same domain of wave
vectors, and mainly in the trailing edges of fast
solar-wind streams, one observes a striking cor-
relation between the velocity 5v and magnetic
fluctuations 6B which satisfy to a good degree the
relation
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v'q —l/C A, (5)

is determined by the transport velocity CA, i.e.,
the velocity of propagation of the fluctuations in
the average magnetic field or, in the absence of

a frame of reference moving with the fluid and

they contain neither source nor dissipative terms
as the present arguments will refer to the iner-
tial range of the turbulence' where these terms
are negligible. Indeed, in the case of the solar
wind, the source terms are either of solar ori-
gin and affect scale lengths of the order of the
dimensions of the fast streams themselves, or
are of local origin and affect then essentially
small wavelengths, of the order of the proton
gyroradius. The most important dissipation
mechanism is, on the other hand, presumably
the collisionless absorption of energy at the ion
cyclotron resonance. '

By referring to the case of small-amplitude
fluctuations, it is seen that the physical interpre-
tation of the quantities 6Z', defined in (4), is that
of the two possible Alfvdnic waves propagating
away from and; toward the sun. According to the
property (2), however, one of the two amplitudes
5Z' or 5Z is zero, and, therefore, the nonlinear
terms in the equations (3) disappear. To the
apparently contradictory observations of (1) the
presence of a power spectrum of the magnetic
fluctuations and, (2) the absence of nonlinear
interactions, two interpretations can be given.
The first one is that all the observed waves are
of solar origin and they propagate without inter-
acting in interplanetary space. However, in that
case one would expect to find in the spectrum
some features characteristic of the solar atmos-
phere.

The second interpretation is that this property
(i.e., the absence of nonlinear interactions) is not
a particular one of the turbulence in the solar
wind but is a general outcome of the relaxation of
an initially excited MHD turbulence, provided
that this initial excitation is asymmetric, i.e.,
favors one sense of propagation of the Alfvdnic
fluctuations.

We will now substantiate this last interpreta-
tion, by means of a dimensional analysis of equa-
tions of asymmetric MHD turbulence. We assume
that the interactions of Alfvd'nic fluctuations are
local in the wave-number space. ' Then consider
the interaction between Alfvd'nic fluctuations (or
eddies) of the same scale l-k '. One can define
two different time scales for such an interaction.
The first one,

a background magnetic field, in the magnetic
field of the largest eddies (scales»l ). The
second time,

T,' I/-6Z', (6)

corresponds to the lifetime of the fluctuating
eddies and, because of the structure of the non-
linear interactions in (3), is different for the two

types of modes. Note that T,,&7,.' in the case of
a relatively weak turbulence and that 7,.') r, , for
strongly developed MHD fluctuations (in the fol-
lowing we shall consider only the two extreme
cases for the whole inertial range). The varia-
tion dZ' in amplitude of a given vortex (6Z') due
to its interaction with another vortex of the other
type (i.e., 6Z') in one interaction time v, , to be
later identified with the shorter of (5) and (6),
is, from Eqs. (3), in order of magnitude,

dZ'- ~,. 6Z'6Z'/I. (7)

X'- [ I 2/(6Z') 2] T,.-'

The corresponding time T' is

(8)

(9)

and can obviously be considered as the time after
which a substantial modification of the amplitude
of 5Z', at the scale l, has occurred.

For fully developed turbulence, and all scales
excited, the shorter time of (5) and (6), in the
smallest scales, is the Alfvenic time so that,
from (9), we obtain

T'- c„I/(6Z')2. (10)

Consider now a stationary state for the turbu-
lence. For this, we must suppose to have, out-
side the inertial range, a source of turbulence
at low wave numbers on the one band and, on
the other, a dissipation sink at high wave num-
bers, sufficiently effective to ensure in fact the
possibility of a stationary state.

Referring first to a symmetric case 6Z'-5Z
-6Z, we impose that the energy II(l) transferred
per unit time from all vortices of scale & l to vor-
tices of scale &l due to the nonlinear interactions
must assume a value e independent from l. We
will have II -(bz)'/T and, using (10) for the time
T of a significant energy transfer, we obtain c

In N such interactions, because of their stochastic
nature, the amplitude variation will be Lz'- vN

&dZ'. Then the number of interactions N' it
takes to obtain a variation, for a given vortex
6Z', equal to its initial amplitude, i.e.,
-5Z', will be given by
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II'(l ) (6Z')2/T'.

Using in (12) the time (10), we obtain

II'(1 ) -1-'C „-'(5Z')'(5Z-)2.

(12)

(13)

As, for a stationary state, II'(l ) —c' (with the c'
independent from I ), we see, from (13), that it
is impossible to have an asymmetric stationary
state (e'p e ). For a stationary state to be possi-
ble, it is required to have symmetry between the
two types of modes at source.

Let us finally consider the case of the relaxa-
tion of an Alfvenic turbulence (disconnected from
the source), with a given asymmetry between
modes + and —at time t= 0. %e continue to postu-
late the existence of a dissipation sink. For ex-
ample, let us suppose that, at 1=0, 5Z'&6Z .
Then, using (10) as a typical time, we obtain

z'/T —-(5z ')'/(5z-)') 1 (14)

which means that the typical energy-transfer time
for modes 5Z is shorter than that for the modes
6Z'. The energy-transfer rate II' continues in
fact to be equal for both 5Z' and 6Z, as indicat-
ed by (13). However, because of the initial un-
balance 6Z') 6Z and the fact that both modes
dissipate at the short wavelengths, we necessarily
end up with at situation where practically all the
energy available remains in the mode 6Z'. Notice
that this final state is not a stationary one (this
would require the continuous presence of the
source) but rather a static state. With only modes

—(5z)'/c „l.
Writing (GZ)'-kE», where E» is the energy

density in the mode k (k -1/l ), we then derive

(~ C )1/2k-3/2

and therefore recover (as e and C A are indepen-
dent of k) Kraichnan's' power law for the spec-
trum of MHD turbulence. This turns out to be
shallower than the Kolmogorov spectrum because
the shorter time of (5) and (6) is the Alfvenic
time, which is equivalent to say that the inter-
actions are weak.

In the second place, we want to consider the
possibility of a stationary state with an asym-
metry 5Z'p 6Z produced at the source. Conser-
vation of total energy, o=[(5Z')'+(5Z )'], and of
total cross helicity, ~[(5Z')' —(5Z )'], imply
that are can impose, for a stationary state, the
constancy of energy transfer, across the inertial
range, separately for the modes + and —.If we
call II'(l ) the transfer rates for (6Z')', respec-
tively, we must write

of type 5Z' (or 5Z ) present there are in fact no
longer nonlinear interactions and no energy trans-
fer across the spectrum. It is important to re-
mark that this tendency toward an asymmetric
state does take place also in the absence of a
background magnetic field the effect of which is
then replaced by the magnetic field of the largest-
scale turbulent eddies.

Turning now to the solar wind observations, the
initial asymmetry between modes + and —neces-
sary to arrive at a one-mode state is clearly
given by the fact that the waves of solar origin
observed at the orbit of Earth, having overtaken
the critical Alfvd'nic point, must be necessarily
all propagating outwards with respect to the sun.
The local sources, on the other hand (related to
the development of instabilities due to velocity
shears" or nonthermal properties of the particle
distribution, '4 are likely to produce + and —waves
with roughly the same efficiency. The evolution
of such fluctuations can indeed be regarded as a
relaxation of an initially excited turbulence, since
each fluid element, being convected with the av-
erage wind velocity, becomes rapidly detached
from the original source, a situation similar to
that of grid turbulence in a wind tunnel. Thus our
arguments on the relaxation to a completely
asymmetric state can be applied to the solar
wind, provided the relevant nonlinear time is
much shorter than a typical convection time.
From (10) we can write the nonlinear time as

where T =(kC A)
' is the wave period and

I FBI /
(B)-0.3 —0.4 for the solar wind turbulence. For
wave periods up to a few hours T' is indeed
much shorter than the convection time (a few
days) and the nonlinear interactions seem then
to be able to generate both a nonlinear cascade
and the asymmetry which is observed.

In conclusion, our dimensional analysis has
indicated that an initially asymmetric MHD turbu-
lence (in the presence of dissipation) relaxes to-
ward a state characterized by the absence of one
of the possible modes (5Z' or 6Z ) and, hence,
without nonlinear interactions. This is true both
in the presence of a background magnetic field
and without. Furthermore, we have found that
an asymmetric (5Z' p 5Z ) stationary state of
fully developed turbulence is not possible.

Clearly, a more quantitative theory, with
strong-turbulence techniques, " should, however,
be developed for the rather large-amplitude
fluctuations characterizing the interplanetary
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plasma. It is worth recalling that a theory based
on the weak-turbulence approximation" has also
shown a tendency for Alfvd'nic turbulence towards
the asymmetry discussed here.

Thanks are due to J. Leorat for useful discus-
sions on the subject of this paper.
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ERRATA

0, (d g) 0+

13.2 360(65) 98(30)
18.3 69(15) 155(20)
23.4 87 (20) 248(35)
30.5 261(45) 330 (50)
45.7 202 (40) 87(25)

The additional error in absolute normalization is
estimated to be -+15%%uo, The summed cross sec-
tions for the excitation region 5 —20 MeV (re-
ferred to in paragraph 4 of page 1575) according-
ly decrease monotonically from 5.8 pb/sr at 13'
to 2.5 pb/sr at 45'.

The above changes have no effect on any other
results or conclusions of the paper.

ANGULAR DISTRIBUTIONS FOR THE REACTION
"O(~', n )"Ne AND PION DOUBLE —CHARGE-
EXCHANGE FORM FACTORS. Kamal K. Seth,
S. Iversen, H. Nann, M. Kaletka, J. Hird, and
H. A. Thiessen [Phys. Rev. Lett. 43, 1574 (1979)].

It has been found that a counter inefficiency
correction was inadvertently applied twice in de-
termining the cross sections shown in Fig. 2.
The correct measured cross sections with their
statistical errors are as follows:

(r (pb/sr)

WHAT CAN WE LEARN ABOUT NUCLEAR ELEC-
TRIC DIPOLE MOMENTS FROM PARITY NON-
CONSERVATION IN ATOMIC TRANSITIONS 7
Geoffrey N. Epstein [Phys. Rev. Lett. 44, 905
(1980)].

There was an error in the evaluation of (P, ~

V~r
x

~ e, ). Remarkably this specific matrix element
is zero even for relativistic wave functions. This
has the effect that for both hydrogen and deuter-
ium we must look for higher-order corrections
which come from vacuum polarization, the elec-
tron anomalous magnetic moment, two-photon
exchange processes, etc. The complete and care-
ful evaluation of these pieces is now essential
and will be discussed fully elsewhere. However,
it is evident now that with the order n' correc-
tion being zero we must end up with an order n'
correction. Therefore at worst we will lose two
orders of magnitude of sensitivity to the proton
and deuteron electric dipole moments (e.d.m. ) in
the 'H and 'H experiments discussed. This
means that the deuteron e.d. m. limit will be im-
proved by seven, not nine, orders of magnitude.
The proton e.d. m. limit will be improved by five,
not seven, orders of magnitude over that obtained
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