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purely hydrodynamic model, in close agreement with experimental data in the tempera-
ture range from 1.7 to 2.1 K.
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In this paper we wish to consider the small two-
dimensiona. l motion r~(t) of a, vortex line subject
to the normal and superfluid velocity fields v„,
and v„of a second-sound wave. Its velocity v~
will be given by'

dr !dt=v

B'
= v„— ""v (v„—v„,) — ""(v„—v„,), (1)-

where p is the helium density, p„ the normal
fluid density, and v is a unit vector along the vor-
tex line. Equation (1) may be regarded as the
very definition of the two mutual-friction coeffi-
cients B and B', first introduced by Hall and
linen. In their original paper, Hall and linen
(H-V) worked out a detailed microscopic model
for B and O'. This model combines a kinetic
treatment of the rotons-vortex collisions with
purely hydrodynamic arguments (Magnus effect,
dragging of the normal fluid), and leads to intri-
cate relationships giving B and B' as a function
of the effective collision diameters o

t~
and 0~

describing the scattering of rotons by vortices. '
In a range of temperature around 1.9 K (i.e., 1.9
+ 0.2 K), where it is known from experiment' that
B'/B~ 0.1, the H-V expression of B can be sim-
plified, and then B written, with accuracy better

than l%%uo, as a complex quantity of the form

p„p,KB=B,+iB2= A — " ' lncu ——
16vgp 2

(2)

Here p, = p —p„, g is the coefficient of normal vis-
cosity, It the quantum of circulation, and cu/2v
is the second-sound frequency [according to nota-
tions of Ref. 3, B= (2p p/„p, K)X ', if quantities of
the order of (B'/B)'=(F/X)'&10 ' are neglected].
The main term A in Eq. (2)—A - 1—is a real and
frequency-independent quantity, appearing in ex-
plicit form as a rather complicated expression
involving 0~~ and 0~, the roton-roton mean free
path L, and also the normal viscosity g.' The
other two explicit terms (-5 X10 ' typically)
represent small corrections usually ignored when
analyzing experimental results. In particular,
the sound frequency ~ is not systematically speci-
fied in collected data B vs T. However, it has
been pointed out by Mehl et al. ' that the slight fre-
quency dependence of the attenuation of second
sound, observed in a rotating cavity, and the ap-
parent variation due to rotation of the second-
sound velocity are well accounted for by the ln~
term and the imaginary term in (2), respectively.
Improving the accuracy of measurements still
further and enlarging the worked frequency range,
we ourselves have studied B, and B, vs ~ at 1.9
K.' Our results corroborate those of Mehl et al. ,
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and provide strong support for the correctness of
the last two terms in the H-V formula (2). In con-
trast, none of the theoretical values of o!!and 0~
derived in literature can account for the principal
term A, i.e., for the absolute value of B, as
shown in the paper of Hillel et at. ' (see, for ex-
ample, their Fig. 1).

Both terms Inn and iv/2 in (2) originate in the
same quantity noted 1/8 in Refs. 2 and 3, which
itself arises from the simple model of a solid
wire dragging an ordinary viscous fluid. Curious-
ly enough this term I/E, originally introduced
with due caution by the authors, turns out to be
the only one agreeing quantitatively with experi-
ment. Therefore we were led to formulate a pure-
ly hydrodynamic theory of mutual friction starting!

from the LBndau-Khalatnikov two-fluid equations.
This was also suggested by Putterman in his
book, ' but on the basis of too restrictive assump-
tions about the normal fluid flow.

Thus, let us suppose we are justified in apply-
ing Landau equations even in the vortex-core re-
gion, fully aware though that such a procedure
certainly fails at low temperature, since the
roton-roton mean free path L becomes large com-
pared to the core radius. We shall pay particular
attention to the consequence, in vortex dynamics,
of the laws of mass and momentum conservation.
Assuming the motion of an incompressible fluid
(p= const, Vp, = —Vp„), which is consistent with
the second-sound wave field, these two laws may
be written as

V (p„v„+p, v, ) = 0, (3a)

p„"+(v„-V)v„+p, '+(v, ~ V)v, +(v, —v„) '+V ~ (p, v, ) =-Vp+V ~ o', (4a)

where p is the pressure and 0 the viscous stress
tensor. ' We shall adopt the simple model of a
superfluid density p, varying from p, = p~= const
outside the core to zero near the vortex center.
The distance a over which p, falls off to zero
should be of the same order of magnitude as the
effective core radius appearing in the expression
of the line free energy, ' and typically a -10 A.
In the equations we may ignore small variations
p„due to the incident wave, since they only ap-
pear in second-order terms outside the core (a
usual approximation in acoustics), and they are
negligible, in the core, compared to the inherent
core variation p~ = p, —p~.

It is convenient to write v, as the sum v„+v,.„
defining v„as the vortex flow. For a stationary
vortex (v „=0), v» ——v„'(r) = (K/2m) ( v x r/r') and

p„=p„(r). In the presence of a second-sound
wave, the vortex fields v, , and p„are expected
to be displaced (center at r~) and deformed.
Nevertheless, we conjecture that the vortex fields
are rigidly transported, supposing the deforma-
tion effects to be of second order in the linear
response. In other words we will seek solutions
of hydrodynamic equations, where v, 2=v„'[r
—r~(t)] and p„=p„[r —r~(t)]; this implies the
conditions

&V~2/Bt = —(vi V)v ap /Bt = —v ~ Vp

V 'Vs2 =
~ ps s2 pn Vs2

Such a drastic assumption will be justified later,
in that we do succeed in finding a solution in the

! given form, satisfying the laws of mass and mo-
mentum conservation, and ultimately agreeing
with experiment.

Because of its viscosity, the normal fluid is
dragged around the moving vortex and we expect
the normal flow v„ to be perturbed over distances
of the order of the viscous penetration depth 5
= (t)/p„u)' '. At usual second-sound frequencies
(~ -10'-10'), and at small amplitudes (v„„v„
-1 mm sec '), the following conditions hold:

x, a«6«A. ,

where A. is the second-sound wavelength. Let v

be the order of magnitude of the velocities v„,,
v„, and v~. From the condition ~~«6, or v~
«~6, it results that the nonlinear terms such as
(v„~ V)v„v'/5 in -Eq. (4a) are negligible com-
pared to the first term ! &v„/&t! -&uv. As A» 6,
spatial variations of v„, and v„are disregarded,
so that V'-v„, = V'v„=0. Hence 7'-v, = V'-v„=0,
and by the last condition (5), Eq. (Sa) of mass
conservation becomes

p„V' ~ v„—(v„—v„) ~ Vp, = 0.

Outside the core, Vp, =0, so that Eq. (Sb) reduces
to V v„=0. Inside the core, variations of v„can
be ignored, and so we may speak of its value v„
= v„(0) at the core. It amounts to neglecting
terms of the order of p, v/6 compared to terms
of the order of p, v/a in Eq. (Sb), which conse-
quently reduces to [v„(0) —v„] Vp, = 0. Since
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Vp, g0 in the core, this implies that

v„(0)=v„.
Now Eq. (4a) can be rewritten, allowing for the transport hypothesis (5) and the approximation condi-
tions (6), Taking account also of Eq. (7), and using V xv, = 0, we find

p„Bv„/Bt+ p, Bv„/Bt+ —,'p, V(v„') + p, V[(v„—v~) v„]+v„[Vp, (v„—v~) J = —Vp+ z)V'v„. (4b)

F = d2y'= v x vs& —v
27T

As long as r~ «6, we may proceed with calcula-
tions by assuming r~=0, and approximate the
source term of Eq. (8) linearly, v~, @,u, as well
as v„, depending on time as e' '. Denoting the
complex amplitudes of various quantities by the
same symbols, let U(k) and 4(k) be the spatial
Fourier transforms of u(r) and &p(r). From Eq.
(8), we have

U(k) = zk &&4/(ip„, (u+ z)k') .
For all values of k «1/a (or I/r~), e'" ' '=1
throughout the core region, and therefore it fol-
lows that 4=F/2&=const. It is clear that, on
the other hand, 4(k) = 0 for k»1/a. The precise
behavior of 4(k) for k-1/a obviously depends on
the detailed structure of the vortex core. Plead-
ing ignorance concerning the core structure, we

(10)

Note that the terms of second viscosity (&, and

&,)' in v have disappeared because V j = V ~ v„= 0.
Let us take the curl of both sides of Eq. (4b).
Introducing u=uv= V&v„, we obtain:

p~ Bu/Bt —z)V'u = V & y,
q)=(v„—v ) x(Vp, xv„).

In the right side of Eq. (8), we have put together,
in a condensed form, all the terms which differ
from zero only in the core region, retaining only
those of the order of p, vv„/a'. Two terms, Vp„
x Bv„/Bt and Vp x Bv,/Bt —p v(a&/a, arising from
the curl of the first two terms in Eq. (4b), are
negligibly small since &u «v„/a -10' sec ' [more-
over, they cancel by Eq. (7)]. An even smaller
term

~
-p„Bu/Bt

~

—p, v~/5, derived from the
first term in Eq. (4b), has also been omitted.

At this stage, the problem of the dragging of
the normal fluid is formally similar to the one of
an ordinary viscous fluid submitted to a localized
density of force p, the diffusion Eq. (8) following
immediately in this case from the Navier-Stokes
equation. In this respect, it is interesting to note
that the total force F turns out to be independent
of the unspecified p, profile, and equal (except
for the sign) to the classical Magnus force'

shall use the approximate step function 4(k) = F/
2m=const, up to k= 1/l, and 0 beyond k = I/I, l
being typically of the order of 1 A if a - 10 A.
Such a procedure is justified because exact values
of 4(k) for large k -1/a are of little significance
when calculating zz(r) from (10). As a matter of
fact, the precise choice of the cut in the k space
will not seriously affect the final result, l appear-
ing in a logarithmic factor. Then, taking the
Fourier transform of (10), we obtain

zz(r) =
2

U(k)e d k = ' (v~ —v„) ~ V6;

S(r) = (I/2~) e ik ~ r d2y

& 0 &1/j k + z /5

B ' = (p„p,K/16zz)p) [In(z)/p„~l') —iv/2]. (13)

Firstly, we note in this result the frequency-de-
pendent term and the imaginary term, which ap-
pear in exactly the same form as in the H-V ex-
pression (2); both terms correspond to now well-
established features of mutual friction, as indi-
cated above. Secondly, if we compare the real
part of B as given by Eq. (13) as a function of
temperature with experimental values of B„we
observe a very good agreement in the tempera-
ture range from 1.7 to 2.1 K, as shown in the

where F(r) is an axially symmetrical function
that we shall need explicitly only for x= 0. Since
V -v„=0 and V &v„=u, we can find v„ from the
vector u by using the Biot-Savart law

v„(r') = v„,+(I/»)Jf d'ru x(r' —r)/~r' —rg'.

(12)

Then, letting r'= 0 in (12) and expressing the
core condition (7), we obtain the required rela-
tion between v~ v„„and v„. A straightforward
calculation yie lds

v„(0) = v„=v„,+ (p,+/4n zl) 6'(0) v x(v„—v„),
$(0) = —,

' ln(1 —i5'/t ') = In5/I —iv/4.

This relation is of the general form (1) with B'=0
and
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perfluid density, which, according to Pitaevskii, "
should become the principal energy-dkssipation
mechanism. In the low-temperature region, as
pointed out above, we expect our hydrodynamic
picture to fail, since L»a. Nevertheless, we
suggest that the diffusion Eq. (8) may remain val-
id, as long as L «6; but the source term in Eq.
(8), as well as the core condition (7), should be
reexamined in the framework of a kinetic theory
of rotons-vortex collisions, such as formulated
by Goodman. "

FIG. 1. The real part of the mutual-friction param-
eter g as a function of the temperature. Solid circles:
Experimental data from Lucas (Ref. 4). Solid curve:
Theoretical curve derived from Eq. (13).

Fig. 1. It is noteworthy that, in this range, B' is
found experimentally to be nearly zero. ' Outside
this temperature interval, experimental values
of B, are larger than expected from Eq. (13),
while B significantly deviates from zero. Agree-
ment with experiment supports our model, clear-
ly indicating that, at the temperatures concerned,
the dissipative process in mutual friction is none
other than the viscosity of the dragged normal
fluid.

In the A, region, vortex dynamics must be recon-
sidered to include effects of relaxation of the su-
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