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tated has been tested for a dilute disordered CO
layer [about —,

' of the c(2& 2) coverage]. The C-0
loss energy was found to remain almost constant
over the range of q~~ explored; 258.0 meV at q t~

= 0.04 and 257.5 meV at q~t
= 0.33.

The solid curve in Fig. 3 is a dispersion rela-
tion calculated according to Eq. (8). U(j~~) was
obtained as described above. In order to make a
direct comparison with the polarizabilities de-
rived from the cross section data we used o,
= 2.5 A' which gave o„=0.23 A' when the theory
was fitted to the experimental data. This figure
is compatible with n„=0.16 A' found above and
we conclude that the C-0 mode dispersion is dom-
inated by dipole-dipole interactions among the ad-
sorbed molecules.
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Monte Carlo simulations and e expansion techniques are used to analyze the behavior
of antiferromagnetic Potts models and the Ashkin-Teller model. The Monte Carlo data
show that the three- and four-state antiferromagnetic Potts models have an ordered low-
temperature phase in three dimensions. Evidence is presented for the existence of a
novel low-temperature, metastable, glassy "plastic crystal" phase in the four-state
antiferromagnetic Potts model in three dimensions.

PACS numbers: 64,60.Cn, 05.70.Jk, 61.40.Df

There has been considerable recent work on the
phase transition of the Potts model. ~ It is now be-
lieved that the ferromagnetic q-state Potts mod-
els with q~3 exhibit first-order transitions in
three dimensions. The situation with antiferro-
magnetic (AF) Potts models is not as clear. Such
systems have a highly degenerate ground state
for q~ 3. Studies of the Ashkin-Teller model, ' in
three dimensions, in the neighborhood of the four-
state AF Potts point have also shown rich and un-

expected behavior. ~ More recently, Berker and
KadanofP have applied one-parameter-rescaling
arguments to such systems and have suggested
that they can exhibit a distinctive low-tempera-
ture phase in which correlations decay algebraic-
ally with distance.

In this Letter, we present results of Monte
Carlo and e-expansion analyses of the AF Potts
models and the Ashkin-Teller model. Our Monte
Carlo computations indicate that the AF Potts
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model with nearest-neighbor interactions on a
simple-cubic lattice is ordered at low tempera-
tures both for q =3 and q =4. However, on quench-
ing suddenly to zero temperature from high tem-
peratures (T»,), we find evidence for a novel
glassy "plastic crystal" phase' for q =4. This
phase is similar to the one suggested by Berker
and Kadanoff' with one important difference. We
find that the glassy phase is metastable and On

heating, we find an analog of the glass transition
temperature above which the low-temperature
phase orders.

Our ~-expansion analysis results taken together
with the Monte Carlo computation indicate that
both q=3 and q =4 Potts models with antiferro-
magnetic nearest-neighbor coupling exhibit con-
tinuous transitions in three dimensions and are
in ther' = 2 and n =3 universality classes, respec-
tively, where n is the number of components of
the order parameter. The results of our ~ expan-
sion analysis for the Ashkin-Teller model permit
the structure of the phase diagram obtained by
Ditzian et al.4 and further clarify the nature of the
various transitions.

Our Monte Carlo' calculations have been car-
ried out on finite lattices (typically 14&&14x14)
with periodic boundary conditions. Our results
are subject to the usual qualifications of finite
sizes smearing out the transition and finite times
of the simulation perhaps not leading to true
equilibration. We have, however, carried out a
number of runs starting from widely different
starting configurations and have confirmed the
equilibrium nature of the final states. Ch;u simu-
lations have also made use of a single spin-Qip
sequence with both the trial spin and the final pos-
sible state of the spin being determined randomly.

The AF Potts models are described by the
Hamiltonian

where S; =a, b, c, . .. is in one of q states, 5&,. ~,
is the Kronecker 5 function and the sum is over
pairs of nearest-neighbor spins. The hypercubic
lattice can be divided into two sublattices so that
a site on one sublattice has its nearest-neighbor
sites on the other sublattice. To determine the
ground state, we sta ted wit t e q states of t e
Potts spins assigned randomly on the lattice sites
(corresponding to T = ~) and lowered the tempera-
ture in small steps allowing the system to equi-
libriate at each temperature. The system ac-
quired a spontaneous staggered magnetization be-

low T, and ordered "antiferromagnetically. " For
the four-state Potts model, the ordering can be
visualized as having two of the four states dis-
tributed randomly on one sublattice and the other
two states distributed randomly on the other sub-
lattice. This type of ordering leads to a ground-
state entropy per site of ln2. Similarly, for the
three-state Potts model, a simplified view of the
ordering has one of the states on the first sublat-
tice and the other two states distributed randomly
on the other sublattice leading to a ground state
entropy per site of & ln2.

We find, however, that the system does not
completely order in the above fashion. On occa-
sion, states of the Potts spins are on the "wrong"
sublattice if the surrounding neighbors permit it.
This leads to an unsaturated magnetic ordering
even at zero temperature. Our results indicate
that the ordering, while having a very high degen-
eracy, does not seem to have the high degree of
complexity needed for the arguments of Berker
and Kadanoff. ' The algebraic order in the low-
temperature phase suggested by them may not be
realized in AF Potts models in three dimensions,
but the Monte Carlo results cannot rule it out
categorically.

To carry out the ~-expansion analysis, we have
made the Kac-Baker-Hubbard transformation' to
obtain a continuous-spin Hamiltonian. Terms be-
yond fourth order are irrelevant and, - as in con-
ventional analysis, are neglected in determining
the critical behavior (irrelevant variables can,
however, influence the nature of the ordered
phases). The AF Potts models are distinctly dif-
ferent from their ferromagnetic counterparts in
that the usual third-order terms do not appear be-
cause of the sublattice symmetry. The q =3 ease
maps into a n =2 continuous-spin Hamiltonian
with the x-y -like stable fixed point being accessi-
ble from the starting Hamiltonian. ' The four-
state Potts model, on the other hand, maps into
a n =3 Hamiltonian. WhGe the isotropic fixed
point is stable in this case, the starting Hamil-
tonian has approximately the symmetry of the Is-
ing-like tricritical point. The prediction of the
e-expansion analysis in this case is that if the
transition is continuous, it is in the n =3 univer-
sality class. The transition, of course, may be
first order because of the 1naccesslb1llty of the
stable fixed point.

Monte Carlo simulations suggest continuous
transitions for both the q=3 and q =4 cases in
three dimensions. However, the possibility of
very weak first-order transitions cannot be ex-
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eluded. The order parameter of the q-state AF Potts model may be defined to be

~=(l »s;..—&~s;,.I+ I &~s,.~- &&s;,~l+ IZ&s, ,.— E&s;,.I+" k/&
gc I sc II ~c I i c II icI ~c II

a, 5, and c are the q states of the Potts spin, I and II are the two su&lattices, and N is the total num-
ber of spins. The dependence of the order parameter on the temperature is shown in Fig. 1. Figure 2
shows a plot of the specific heat for both the q =3 and q =4 cases. The cusps in the specific heats near
the critical point are consistent with the renormalization-group-theory predictions of small negative
e.' '" We have also done Monte Carlo simulations of the five-state AF Potts model in three dimen-
sions. Our results suggest that the system is paramagnetic at all temperatures.

The Ashkin-Teller model can be considered to be a simple-cubic lattice with two Ising spins v and $
sitting on each lattice site coupled by the Hamiltonian

—3C/k T = (J2/k T) 4 ((x;o, + 'S; S,) + (JJk T) Q a';o', S;S, = K Q (0',&; + S;S,) +K Q &;o';S;S,
(i j& &4)

with J2 chosen to be ferromagnetic.
The phase diagram of the Ashkin-Teller model

was recently determined with use of series analy-
sis and Monte Carlo simulations by Ditzian et al.4

and their results are shown in Fig. 3. By trans-
forming to a contiauous-spin Hamiltonian, ' we
have carried out an ~-expansion analysis of the
Ashkin- Teller model. As suggested by Ditzian
et al. , 'AG is a line of first-order transitions (the
point P represents the ferromagnetic four-state
Potts point) and FB, GC, and KD describe Ising
transitions. The pointK (atK, =-K4) is the AF
four-state Potts point and is a n = 3 bicritical
point. The line between the decoupled Ising-style
tricritical point at K4 =0, A, and the bicritical
point K is a line of XY-like transitions with the
point JJ being a XY-like bicritical point. The
lines KE and HI are lines of first-order transi-
tions, where the nature of the ordered state
changes. The scaling predictions of Fisher and
Nelson~ for the Heisenberg bicritical point are
valid at the point K. The analysis predicts smooth
behavior of the line. AK near the XY bicritical
point.
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FIG. 1. The order parameter of the three- and four-
state AF Potts model |'d = 3) plotted as a function of
the reduced temperature.
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FIG. 2. Specific heats of the q-state antiferromag-
netic Potts models (q = 3 and 4; d = 3) as a function
of the temperature.

! As discussed previously, the three- and four-
state AF Potts model order in the low-tempera-
ture phase. One can, however, realize a glassy
"plastic crystal" phase' in the Ashkin- Teller mod-
el in d=3 atK4=-K2 or its q=4 AF Potts analog
by quenching suddenly to zero temperature from
the paramagnetic phase. It is convenient to con-
sider the Ashkin-Teller model since the order
parameter is unambiguous4 and is given by either
(v), (S), or (OS)„F. The Ashkin-Teller model
(K4 =-K2) was quenched from T = ~ to T =0 (&T, /
I J,!=2.9). Single spins were then flipped to low-
er the internal energy. This was continued until
a "ground state" was reached. The ground state
was characterized by short-range order but there
was no semblance of any long-range ordering.
On making thousands of passes through the lattice
the system did not show any ordering in the
sense previously discussed.

For all the glasses studied, when the tempera-
ture was raised suddenly from 0.0 to kTI Jml
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FIG. 3. Phase diagram of the Ashkin-Teller model
in three dimensions obtained from series analysis and
Monte Carlo simulations (from Ref. 4). The Baxter
phase has (o), (S), and (oS) nonzero. The (oS) and
(oS)~ phases have the (oS) product ordered ferromag-
netically and antiferromagnetically, respectively,
whereas the a and S spine are disordered. In the (o)
phase, the symmetry be@veen the o and S spins is
broken spontaneously and only one of them is ordered
ferromagnetically. The product (08) is disordered in
the (o') phase.

2 0.8, one of the three order parameters quickly
(300 to 500 passes) acquired its nonzero equilib-
rium value while the other two remained zero.
Suddenly raising the temperature of the same
glassy state from 0.0 to kT c 0.8i J, i

resulted in
the system remaining in the glassy state for long-
er times. For example, at kTiZ, i

'=0.6, the
system ordered after 2000 passes, whereas at
kTi J, i

'so.5, the system did not order during
the time span of the simulation (- 3000 passes).

The behavior of the plastic crystal phase is con-
sistent with that of ordinary glasses. The essen-
tial difference is that whereas in a real glass,
the configuration of atoms is such that the glass
is in a metastable state of higher internal energy,
the plastic crystal phase is in a state of lower en-
tropy than the "ordered" phase, which is of no
consequence at T =0. For nonzero T less than T,
the system equilibrates to a state with finite stag-
gered magnetization. At T =0, we have found that
there is a barrier to nucleation of the ordered

phase. A system created with half of it ordered
and the other half in a plastic crystal phase es-
sentially remains unchanged after several hundred
passes through the lattice. It seems possible that
the distinctive low-temperature phase obtained in
the one-parameter scaling analysis of Berker and
KadanofP is the plastic crystal phase.

The three-state Potts model is not a good glass-
former in d =3. When the system is quenched
from T =~ to T =0, after only a few hundred pass-
es through the lattice, the system acquires a
well-defined "antiferrromagnetic ordering " of
the type described previously.

These unusual properties of AF Potts models
may be related to the fact that domain walls in
such models do not cost any internal energy.
However, their construction entails a loss of en-
tropy proportional to the area of the domain
walls. One may speculate that properties of the
plastic crystal phase may be understood in such
terms. In particular, it is likely that a multispin-
fbp Monte Carlo sequence will lead to a rapid de-
cay of metastable states facilitated by the motion
of domain walls.

We are grateful to Leo Kadanoff for many hours
of stimulating discussions and for sharing many
of his insights with us. We would like to thank
Ruth Ditzian for stimulating our interest in Potts
models and for many useful discussions. Valua-
ble discussions with N. Berker, M. H. Cohen,
S. B. Nagel, M. P. de Nijs, J. Budnick, and
S. Shenker are gratefully acknowledged. This
work was supported in part by the Materials Re-
search Laboratory programs of the National
Science Foundation at The University of Chicago
and Purdue University, and by the National Sci-
ence Foundation under Grants No. DMB-V9-
OV232, No. DMR-VV-23V98, and No. DMR-V6-
19443.

~R. B. Potts, Proc. Cambridge Philos. Soc. 48, 106
(1952); J. P. Straley and M. E. Fisher, J. Phys. A 6,
1310 (1973); R. K. P. Zia and D. J.Wallace, J. Phys.
A 8, 1495 (1975); 8,. G. Priest and T. C. Lubensky,
Phys. Rev. B 13, 4159 (1976).

H. W. J. Blote and R. H. Swendsen, Phys. Rev. Lett.
43, 799 (1979); S. J. Knak Jensen and O. G. Mouritsen,
Phys. Rev. Lett. 43, 1736 (1979).

3J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).
4R. V. Ditzian, J. R. Banavar, G. S. Grest, and L. P.

Kadanoff, Phys. Rev. B 22, 2542 (1980).~¹Berker and L. P. Kadanoff, to be published.
6A "plastic crystal" phase is one in which the mole-

cules (or spins) are translationally ordered but rota-

1427



VOLUME 45, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OCTOBER 1980

tionally disordered. For details, see H. Suga and
S. Seki, J. Non-Cryst. Solids 16, 161 (1974).

VFor a review see K. Binder, in Phase Transitions
and Cmtical Phenomena, edited by C. Domb and M. S.
Green {Academic, New York, 1976), Vol. 5B.

8M. Kac, Phys. Fluids 2, 8 (1959); G. A. Baker,
Phys. Rev. 126, 2071 (1962); J. Hubbard, Phys. Lett.
39A, 365 {1972}.

A discussion of the fixed points (and their relative
stabilities) of n-component systems with cubic sym-
metry-breaking fields may be found in A. Aharony,

in Phase Transitions and Critical Phenomena, edited
by C. Domb and M. S. Green (Academic, New York,
1976), Vol. 6.

'oJ. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett.
39, 95 (1977).

If the transition in the q = 4 case were weakly first
order, one might expect, an apparent Ising-like diverg-
ence of the specific heat because of the proximity of
the tricritical fixed point.

'2M. E. Fisher and D. R. Nelson, Phys. Rev. Lett. 32,
1350 (1974).

Hydrodynamic Theory of Mutual Friction in He II

P. Mathieu and Y. Simon
GxouPe de Physique des Solides de l'Ecole ¹xmale SuPerieuxe, Il-FM31 Pa+is 05, I'yance

(Received 9 June 1980)

Theoretical values of the mutual-friction parameters B and B' are derived from a
purely hydrodynamic model, in close agreement with experimental data in the tempera-
ture range from 1.7 to 2.1 K.
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In this paper we wish to consider the small two-
dimensiona. l motion r~(t) of a, vortex line subject
to the normal and superfluid velocity fields v„,
and v„of a second-sound wave. Its velocity v~
will be given by'

dr !dt=v

B'
= v„— ""v (v„—v„,) — ""(v„—v„,), (1)-

where p is the helium density, p„ the normal
fluid density, and v is a unit vector along the vor-
tex line. Equation (1) may be regarded as the
very definition of the two mutual-friction coeffi-
cients B and B', first introduced by Hall and
linen. In their original paper, Hall and linen
(H-V) worked out a detailed microscopic model
for B and O'. This model combines a kinetic
treatment of the rotons-vortex collisions with
purely hydrodynamic arguments (Magnus effect,
dragging of the normal fluid), and leads to intri-
cate relationships giving B and B' as a function
of the effective collision diameters o

t~
and 0~

describing the scattering of rotons by vortices. '
In a range of temperature around 1.9 K (i.e., 1.9
+ 0.2 K), where it is known from experiment' that
B'/B~ 0.1, the H-V expression of B can be sim-
plified, and then B written, with accuracy better

than l%%uo, as a complex quantity of the form

p„p,KB=B,+iB2= A — " ' lncu ——
16vgp 2

(2)

Here p, = p —p„, g is the coefficient of normal vis-
cosity, It the quantum of circulation, and cu/2v
is the second-sound frequency [according to nota-
tions of Ref. 3, B= (2p p/„p, K)X ', if quantities of
the order of (B'/B)'=(F/X)'&10 ' are neglected].
The main term A in Eq. (2)—A - 1—is a real and
frequency-independent quantity, appearing in ex-
plicit form as a rather complicated expression
involving 0~~ and 0~, the roton-roton mean free
path L, and also the normal viscosity g.' The
other two explicit terms (-5 X10 ' typically)
represent small corrections usually ignored when
analyzing experimental results. In particular,
the sound frequency ~ is not systematically speci-
fied in collected data B vs T. However, it has
been pointed out by Mehl et al. ' that the slight fre-
quency dependence of the attenuation of second
sound, observed in a rotating cavity, and the ap-
parent variation due to rotation of the second-
sound velocity are well accounted for by the ln~
term and the imaginary term in (2), respectively.
Improving the accuracy of measurements still
further and enlarging the worked frequency range,
we ourselves have studied B, and B, vs ~ at 1.9
K.' Our results corroborate those of Mehl et al. ,
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