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This Letter presents the first application of the Schwinger variational principle for
multichannel scattering. Results are presented for an exactly soluble two-channel model
problem. The accuracy and convergence of the Schwinger variational principle are shown
to be extremely good and superior to those of other variational methods.

PACS numbers: 34.80.-i, 34.50.-s, 34.10.+x

In spite of several desirable features, the
Schwinger variational principle" has not been
applied extensively to scattering problems. Sev-
eral recent applications' ' of the Schwinger prin-
ciple to single-channel electron-molecule colli-
sion problems demonstrated the potential of the
Schwinger method. Furthermore, we are current-
ly extending the Schwinger method to multichan-
nel problems on the basis of a new formulation.
In order to assess the effectiveness and accuracy
of the Schwinger method for multichannel cases,
we have solved the model two-channel problem
proposed by Huck' prior to its application to actu-
al systems. In this application, we have found
that the Schwinger method is extremely effective
yielding results far more striking than those of
sophisticated versions of the standard variational
principles. ' " As far as we know, this is the
first example of the application of the Schwinger
principle to a multichannel problem.

The exactly soluble two-channel model problem
used by Huck, ' Nesbet, ' "and more recently by
Harris, "is defined by the Hamiltonian II =II, + V
with

II.=
I x,& (- -'d'/«')(x,

l

+
I xg[- ld'/«'+ &&j(x.l,

and (X„IX„)=5 „. In terms of the regular eigen-
functlons of Ho,

S (r„r,)=X (r, )k "'sink r„m=1,2, (4)

the variational functional for the K matrix is giv-
en by

i
(e Uls„)(s IU e„)
(4 (UG,U —U) 0„)' (5)

G, (r „r„r,'r, ').

=- P S.(r„r,)C„(r,', r, ),

where C is the irregular solution of H„and y&
= max(r„r, ') and r, = min(r„r, '). It should be
noted that the above Green's function has a very
simple structure, since no permutation symme-
try is imposed on the wave functions 4' (m = 1,2).
As usual, the wave function is expanded in terms
of a basis set frt; lm =1,2;i =1, . . . , N jI. From
the stationary condition 5[K „]=0, the K-matrix
elements can be written as

2 N
= g P &~.IUln )D;,"&rt, 'IUIS. &,

a, b i, j
where

where U=2V. In Eq. (5), the free-particle (stand-
ing-wave) Green's function G, is

v= p Ix.&v..&x. l, (2)
(D ');,"=&a I(UG.U —U)lrt, '& (8)

where In order to compare with the previous results
of Nesbet et al. ' "and Harris and Michels" and
the exact results, ' we also choose the potential
parameters a =1.0 and C'=10.0, and the energies
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E =0.5, and hE =0.375 (k, =1.0 and k, =0.5). For
our calculation, the basis set is composed of on-
ly the I.' functions

(9)

since the total energy (E =0.5) is sufficiently low-
er than the height of the potential (W —1.58).
However, in the high-energy region where the
Born approximation is valid, it would be neces-
sary to include the long-range function in the ba-
sis. The optimum value of the parameter p for

was determined to be 2.5 by Nesbet' and Har-
ris" for their variational methods.

The double integrals (q,. '~ (UG, U —U)~q,.') appear-
ing in Eq. (9) are evaluated using a 32-point
Gaussian quadrature. The use of the recursion
formula makes this double integration efficient
and accurate. The general procedure for the in-
tegral UG, U has already been described else-
where' and also will be discussed in our later
publication.

In Table I, we show the deviation (b,K) of the K

matrices obtained from the Schwinger variation-
al principle from the exact results as a function
of the basis set size N. The computational re-
sults in terms of two different basis sets with the
exponent p =2.5 (the same as that for the other
methods) and 0.9 (optimized value for the Schwing-
er principle) are listed.

To compare and to emphasize the accuracy of
the Schwinger method we also show the deviations
of the K matrices obtained by Nesbet by means of
the anomaly-free (AF), ' optimized anomaly-free
(OAF),"and restricted interpolated anomaly-
free (RIAF)" methods and by Harris and Michels
with the minimum-norm (MN)" method. Our re-
sults are quite clear and impressive. The rate
of the convergence of the Schwinger method with

p =2.5 is much faster than those of the other
methods. For instance, the Schwinger K matrix
with two basis functions (%=2) is already closer
to the exact value than the K matrices of the oth-
er methods with use of 25 basis functions. Fur-
thermore, with %=6, the Schwinger E matrices

TABLE I. The deviation (4&) of the variationally determined K matrices from the exact values.
The exact values are: E&& = 21.765 25, E&2 = E2& = —14.127 42, and E22 = 8.733 85 (see Ref. 9) .

&K)) N = 1
2

4

6

10
25

AF

-5. 61743
-2. 99726
-1.39131
-0. 36330

MNb

-18.72853
-58. 41920
- 5. 69784
- 3. 29061

i. 40472

OAF

-4. 54847
-2. 99989
-1.37881
-0. 33532

RIAF

-3. 00448
-1.39O40
-0. 29985

8 changer
(P = 2.5)'
-19.09277
- 0. 26131
- O. 01000

0. 0
0. 0
0. 0

8chwimger

(P = 0.9)'
-Q. 14259
-1.53971
-0. 00004

0. 0
0. 0
0. 0

~K„N = 1
2

4

6
10
25

3. 57888

1.91396
0. 88909
0. 2303V

11. 86603

3V. 84736
3. 66193
2. 09620
0. 89739

2. 89239
i. 91579
0. 88115
Q. 21363

1.91839
0. 88850
0. 19117

12. 10630
0. 0V861

0. 00600
0. 0
0. 0
0. 0

-0. 09141
0. 9656V

0. 00002
0. 0
0. 0
0. 0

~K N=
2

4

6

10
25

-2. 28298
-1.2239V

-0. 56896
-0. 14621

- V. 54469
24. 52584

- 2. 35953
1.33719

- 0. 5V410

-1.84341
-1.22525
-0. 56393
-0. 13619

-1.22670
-0. 56858
-0. 12198

V. 57920
0. 01638
0. 00355
0. 0
0. 0
0. 0

0. 19492
-0. 60478
-0. 00002

0. 0
0. 0
0. 0

Refs. 9 and 10.
Ref. 12.

Ref. 11.
The exponent in the basis functions.
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have almost completely converged to the exact
values, whereas the results of the other vibra-
tional methods are still far from being converged.
As can be seen from the table, the K matrix of
the Schwinger principle with N= 1 is worse than
that of the MN method. This implies simply that
the basis functions with p =2.5 are not the best
for the Schwinger principle, even though they are
the best for the standard variational principles. "
In fact, the best K matrix of the Schwinger meth-
od with N= 1 was found to be given for a value of
0.9 for the parameter p in Eq. (9). In this case,
K» and K» (=K») of the Schwinger method are
better than those of the other variational methods
even with ¹25.We have made this comparison
between the Schwinger and Kohn-type methods on-
ly at one energy since the Kohn-type methods
have not been applied to this model problem at
any other energies. It would be interesting to ex-

tend the present comparison of these methods to
other energies.

A comparison of the cross sections (Q ) is
shown in Table II. The cross section is much
less sensitive than the K matrix. The cross sec-
tions at N= 2 are a good example: The minimum-
norm method gives better cross sections than the
Schwinger method with p = 2. 5 in spite of the fact
that this method gave the worst K matrix at N
=2. However, for N greater than 2, the Schwing-
er method gives the best results. With six basis
functions, the cross sections from the Schwinger
method coincide with the exact ones. The conver-
gence is faster than const x 10 " (AQ~+, /&Q&
& constx 10 ') for almost all N. Again, more
impressive results are obtained by means of the
Schwinger principle using the basis functions of
p =0.9. The deviations are roughly ten times
smaller than those of the Schwinger method with

TABLE II. The deviation of the computed cross sections from the exact
ones. The exact cross sections, /~~=2. 16791, Q&2=0.76746, /2~=3. 069 85,
and @22=2.55844. See Ref. 9. DQ~„(in units of Ttao ).

&Q»
2

3
4
5

AF

-0. 27129
-0. 01387
-0. 04953
-0. 0080V
-0. 00330

MN

-0. 26426
-0. 01336
-0. 02550
0. 00O68

-0. 00193

Scbwinger
@ =2.5)'

-0.42134
-0. 02142
-0. 00173
-0. 00OO9

0. 00000

Schwinger
@ =0.9)

-0. 04145
-0. 00516
-0. 00049
0. 0
0. 0

ag„1
2
3
4
5

0. 08584

0. 0051V

0. 00665
0. 00475
0. 00226

0. 08055
-0. 01268
0. 01399
0. 00200
0. 00200

0. 10898
0. 00708
0. 00058
0. 00003
0. 00000

0. 01342
0. 00215
0. 00003
0. 0
0. 0

~Qadi

2
3

5

0. 34334
0. 02068
0. 02659
0. 01899
0. 00903

0. 32220
-0. 050V4

0. 05596
0. 00800
0. 00801

0.43591
0. 02832
0. 00230
0. 00013
0. 00000

0. 05366
0. 00860
0. 00011
0. 0
0. 0

4Q~ 1
2

3

5

0. 00454
0. 03600
0. 16017

-O. 00219
-0. 00122

-0. 12261
0. 18866

-0. 02510
0. 00304

-0. 00)86

-0. 55696
-0. 02922
-0. 00146
-0. OOOOV

-0. 00001

-0. 04418
-0. 00262
-0. 00005
-0. 00001
0. 0

'Ref. 9.
Ref. 12.
The exponent in the basis functions.
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p =2.5.
As presented in this Letter, the Schwinger

method for the multichannel scattering has been
shown to yield much better results than those of
other variational methods. The rapid conver-
gence is dramatic. In conclusion, the Schwinger
variational principle is quite promising and en-
couraging for the multichannel scattering as well
as for the single-channel case.

Recently Thirumalai and Truhlar" carried out
a series of calculations on an attractive exponen-
tial potential which were designed to compare the
convergence of the Schwinger variational princi-
ple with that of the Kohn method. They concluded
that the Kohn-type methods show much better con-
vergence to the accurate result than the Schwing-
er method. Unfortunately the same trial scatter-
ing wave functions were not used in these two
variational principles. We have repeated these
calculations using the same trial wave functions
in the Schwinger and Kohn variational principles
and find that the Schwinger procedure gives su-
perior results. ' Hence these results are in fact
consistent with the trend seen in the present ap-
plication of these methods to this two-channel
model problem. Details of these calculations
and a discussion of the mathematical relationship
between the Schwinger and Kohn variational meth-
ods will be published elsewhere. '
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Heating by Raman Backscatter and Forward Scatter

Kent Estabrook, %. L. Kruer, and B. F. Lasinski
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This Letter presents computer simulations of the reflection and heating due to stimu-
lated Raman- scattering of intense laser light in large regions of underdense plasma.
The heated electron distribution is approximately a Maxwellian of temperature 222,

A simple model of the reflection is presented. Forward Raman scattering was also ob-
served producing extremely energetic electrons. Finally, two-dimensional simulations
showed sizable Raman scattering coexisting with heating by the 2u& instability. Raman
scattering may cause a preheat problem with large laser-fusion-reactor targets.

PACS numbers: 52.25.Ps, 52.35.Py, 52.50.Jm, 52.65.+ z

Motivated by recent observations" of Raman
scattering in reactor targets and the great inter-
est in this process as a preheat source, we pre-

sent computer simulations of the reflection and
heating due to stimulated Raman backscattering
of intense laser light in large regions of under-
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