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ment because it has several desirable qualities.
The mean free path of the incident electron is
larger than in most other materials [at least for
the (100) and (111)surfaces] giving more oppor-
tunity for photon emission. The top part of the d
bands is unoccupied giving a range of high density
of states to which the electron can make a transi-
tion, and providing a rich band structure on which
to test whether direct transitions are observed.
Tungsten also has a strong potential which in-
creases the electron-photon interaction.

In conclusion, theoretical estimates all point to
inverse photoemission being an easy experiment
with plenty of signal. Experimental confirmation
is essential for further progress.

I thank Bengt Kasemo and Franz Himpsel for
helping me on experimental points concerned with
photon and electron detection, respectively.
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A relation between the spectrum and correlation exponents of the Luttinger model is
argued to be a general property of a universality class called Luttinger liquids. " The
spinless fermion model equivalent to the S= & Heisenberg-Ising-XF chain in a field is
argued to belong to this class, allowing for the first time the systematic calculation of
its correlation exponents.

PACS numbers: 75.10.Jm, 71.45.Gm

Interacting quantum systems in one dimension
(1D) have many distinctive features not present
in higher dimensions, and which can be seen in
various kinds of soluble models. In this Letter,
I develop a new connection between two very dif-
ferent classes of soluble fermion models which
in general have been studied by two separate sets
of workers. These classes are (i) the Luttinger
model, ' a model with long-range (noncontact)
forces, which has a conserved fermion current,
and a gapless elementary excitation spectrum of
free bosons with a linear spectrum, and (ii) mod-
els with contact interactions that can be solved by
the Bethe Ansatz, ' and which have a gapless lin-
ear excitation spectrum. It is now known that
models soluble by the Bethe Ansatz have an S ma-
trix that is nontrivial (i.e. , their elementary ex-

citations are rtot free particles) but factorizable. '
This property reflects the existence of an infinite
set of conserved quantities, but which does not
include the current.

The idea underlying the result is simple, and
is an extension of an idea implicit in the work of
Luther and Peschel4: This is that the low-energy
properties of the Luttinger model are character-
istic of a larger universality class of systems,
which includes most, and probably all, 1D fermi-
on systems with a gapless linear spectrum. By
analogy with the Fermi-gas/Fermi-liquid rela-
tion in higher dimensions, where the noninteract-
ing elementary excitation spectrum of the Fermi
gas provides the model for the low-energy spec-
trum of the Fermi liquid, I propose to call such
systems "Luttinger liquids. " Provided relevant
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gap-inducing processes are absent, all such sys-
tems are equivalent to the Luttinger model at
least to leading order in perturbation theory,
since these terms depend only on the structure
at the Fermi level.

The T =0 correlation functions of the spinless
Luttinger model are characterized by power laws
with coupling-constant dependent exponents, and
the structure of the model means that they are
all determined by a single parameter. ' The idea
of Luther and Peschel4 is that such relations are
generally valid in a larger universality class,
among the members of which are certain models
soluble by the Bethe Ansatz. In a particvJar lim-
it of one of these models, they were able to iden-
tify one of the correlation exponents by an indi-
rect route, and hence, from the universality
argument, they were able to predict all the oth-
ers. However, this identification of a correla-
tion exponent is not generalizable, and, despite
the fact that standard (numerical) techniques have
been developed within the Bethe Ansatz frame-
work for calcvIation of the excitation spectrum,
the general calculation of correlation exponents
has been a long-standing unsolved problem. In
this Letter, I report a hitherto unrecognized rela-
tion between the correlation exponents and low-
energy spectrum of the Luttinger model. When
coupled with the argument that this relation too
is a universal property of "Luttinger liquids, "
this allows the systematic identification of corre-
lation exponents from calculated spectral proper-
ties.

As an example, I present the calculated phase
diagrams of the exponent and spectral parameters
of the S =-, Heisenberg-Ising-XY spin chain (i.e. ,
the Heisenberg chain with uniaxially anisotropic
nearest-neighbor exchange, or "XXZ" model') in
a field along the anisotropy axis (the model treat-
ed by Luther and Peschel was the zero-field limit
of this). This Bethe-Ansatz-so1uble model can
be related to the Luttinger liquid as it can be rep-
resented as a spinless fermion model by use of
the Jordan-Wigner transformation. ' There is
much rich structure in the phase diagram. The
Hubbard chain, ' a spin- —, fermion model, can al-
so be described from a Luttinger-liquid stand-
point, and a calculation of its phase diagram is
in progress.

The Luttinger model' is a model of interacting
1D electrons and positrons with a linear disper-
sion; I will restrict the discussion to the spinless
fermion case, on a ring of finite length L. It is
well known that the elementary excitations are

noninteracting bosons, ' which are quantized den-
sity-wave excitations of the Fermi gas. However,
there is an additional nonbosonic part of the spec-
trum, ""which has generally been ignored in the
literature. These terms are the energies asso-
ciated with states of nonzero charge (with respect
to a Fermi sea filled up to a Fermi vector kF)
and current. Charge is, of course, conserved,
and since the Luttinger model has a linear fermi-
on dispersion and no backscattering terms, so is
the current. The charge and current are not af-
fected by the presence of boson sound-wave exci-
tations. In its diagonal form, the spectrum is' "

H =Q, (u, b, tb, + —', (m/L)(v„N'+v t'). (1)

The boson dispersion is linear as q-0: ~, -v~~q~;
the boson index q takes values 2mn/L, n =+ 1,
+ 2, . . . , but there is no q =0 mode. Instead,
there are the integer quantum numbers N (the
charge) and J, which is subject to the selection
rule (- 1) = (-1)". The momentum is given by
P =[kF+ m(N/L)]Z+Q, qb, tb, , so J is increased
by 2 for each 2kF excitation. Note the dependence
on the "true" Fermi vector [kF +p(N/L)], rather
than the nominal value kF which defines the zero-
charge state. The low-energy spectrum depends
on three distinct parameters, all with dimensions
of velocity. In the case of the noninteracting mod-.
el, v ~

= vN =v ~, but this is not generally the case.
A key aspect of the theory of the Luttinger mod-

el is the representation of the fundamental elec-
tron and positron fields in the basis of eigenstates
of (1). Again, the commonly quoted forms'" are
incomplete or ambiguous in their treatment of
the nonbosonic part, but precise forms, valid
without qualification on a ring of finite length,
ark available. ""The fermions are described
by subsidiary "right-" and "left-moving" fermi-
on fields p~~()x, p =+ 1, parametrized by a param-

P ~(x) =NL "R' "'e' P (x)U e'P (x), (2)

where

Pq(x, y, ) = [2p (kq+ zN/L)x + 2p(J/L)x

+i&,~(pq, —q&,) exp(- iq )bx,],
and so (2) is normal ordered in the bosons, and
o'(q, y ) =(2z/L~q()'~ [8(q) cosh', +8(-q)si hen, ];
the exponent v is —,

' cosh(2y). The normalization
constant N depends only on y and the function
g(y), where g(0) = 1, and y "~'g(y) —0 as y —~.'
R is a characteristic length associated with the
range of interactions. The unitary operators U~
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are ladder operators that change the integers K
and J': [N, U~] = U~, [J', U~] =pU~. Reflecting the
Fermi statistics, U~ and U ~ anticommute, and

U~iN, J) =p"~%+ I,J'+p). Finally, U~, like N and

J, commutes with the bosons. The construction
of U~ in terms of the bare fermions has been de-
scribed in Ref. 11.

The model is fully parametrized by L, kF, &„
y„v~, and v~. However, these last two are not
free parameters, and are given by

v„=v, exp(- 2'); v, =v, exp(2y).

These relations can be obtained in two ways:
(i) By expressing their components in terms of
the bare parameters of the model, or (ii) by us-
ing (2) to obtain the density operators

p, (x) =Iim[g, ~(X+a)g, (x) —(1I,t(x+a)g~(X)),],

and comparing their response functions (a) for
q =0 (a calculation involving only nonbosonic
terms) and (b) for q-0 (a calculation involving
only boson terms). Similarly, (2) can be used to
establish that the mean current j is v ~(J/L), so
v~ is the renormalized Fermi velocity. v~ is, of
course, the sound velocity, and v„relates chang-
es in chemical potential to those in kF: 5p. =v„5kF.
The correlation exponents depend only on the pa-
rameter y: Various exponents are tabulated in
terms of 8 = —,

' exp(- 2y) in Ref. 4.
I now propose that (3) and the relation between

exp(-2') and the correlation exponents are gen-
erally valid properties of 1D conductors, which
I propose to call "Luttinger liquids. " One test,
briefly reported here, is provided by models sol-
uble by the Bethe Ansatz, for which v~ and v~,
and by inference exp(- 2'), can be obtained. Fea-
tures of these models, particularly those associ-
ated with Umklapp processes, are found' to con-
form in precise detail to those expected from the
analysis of Luttinger-type models. A second
piece of evidence, reported elsewhere, "is a di-
rect demonstration (by perturbation expansion
around the Luttinger model) that introduction of
nonlinearity into the bare fermion dispersion
changes neither (2) nor the relation between
exp(-2y) and the correlation exponents. The new
features that appear are an irreducible boson-bo-
son interaction term, making the model no long-
er soluble, and dependence of the fundamental pa-
rameters v~ and exp(-2y) on ground-state occu-
pancy. The model becomes completely general
if current-nonconserving terms involving U~U ~

'
are added: A scaling analysis' shows that unless

a gap is induced, the model retains Luttinger-
liquid character at low energies.

I have tested these ideas on the spinless fermi-
on representation of the anisotropic Heisenberg
chain, with anisotropy parameter b, (1 (the re-
gion b, ~ 1 is ferromagnetic, and does not have
Luttinger-liquid character). 6 = 0 corresponds
to a free-fermion system, and 4 = —1 is the iso-
tropic antiferromagnet. I performed the calcula-
tion in finite field numerically, using standard
techniques. '" In zero-field (corresponding to a
half-filled-band fermion system) analytic results
in the literature are in precise accord with the
Luttinger-liquid predictions: When parametrized
by cosg = —b, , ve is given" by (~/P, ) sining, v„by'
2(m/p. —1) sining. Equation (2) then predicts
exp(-2y) =2(1-p/11): This result has in fact
been obtained previously by Luther and I'eschel~
using entirely different methods.

The calculated phase diagrams are parame-
trized by 6 and the fermion occupation per site
n.' The magnetization per site S in the spin pic-
ture is n ——,', and the field h along the anisotropy
axis that produces this is given in Fig. 1. The
spectrum has Luttinger-liquid form" for 4 (1,
0 &n & 1, except along n = 2, ~ & - 1, where Um-
klapp processes induce a gap. Figures 2(a)-2(d)
show the calculated v~ and v„, and the derived
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FIG. 1. Ground-state phase diagram of the S=&
Heisenberg-Ising-~ chain, giving the relation between
magnetic field k along the anisotropy axis (in units of
basal plane exchange IJ&i) and magnetization per site
S' =n —a, where A =Jg/iJil, plotted on a nonlinear
scale ~ tan {-A). In the fermion description, -b is
the coupling, and n the occupation per site. The region
4 ~ 1 is ferromagnetic. In the region 4 (1, 0 +m & 1 the
excitation spectrum is of gapless Luttinger-liquid type,
except along the line 4 & —1, n = &, representing a pinned
density wave with doubled unit cell (i.e., the easy-axis
antiferromagnet with S = 0) .
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The experimental critical behavior of the susceptibility of LiTbp 3 Yp 7 F4 is described
by the power law p = l l(T —T )I& 1 & with 7.' = 0.520+0.003 K and p = 1.80+0.04. This
behavior is dramatically different from that previously observed in LiTbF4 and is evi-
dence of a departure from margina1 dimensionality when magnetic ions have been ran-
domly replaced by nonmagnetic ions. Series expansion of (pT) ' in powers of T for
a diluted Isirg dipolar ferromagnet gives a good description of experimental results
described in this Letter.

PACS numbers: 75.50.Dd, 75.40.-s

The critical behavior of pure uniaxial dipolar
ferromagnets is one of the best explained critical
phenomena. In this case the marginal dimension-
ality is d* =3. In the close vicinity of the critical
temperature T„ the magnetic susceptibility is
predicted~ to have logarithmic corrections to the
classical law so that it diverges as t '~ lnt

~

'~',
where t is the reduced temperature t =(T —T,)/T, .
The first higher-order term of the logarithmic
corrections has been calculated for all the ther-
modynamic quantities in zero magnetic field~ and

in the whole critical region for a finite field. 2

LiTbF4 is a quasiuniaxial dipolar ferromag-
net."The experimental critical behavior of
these crystalline pure compounds' ' ' is well de-
scribed by the theoretically predicted classical
behavior with logarithmic corrections.

In diluted uniaxial dipolar ferromagnets where

some magnetic ions are randomly replaced by
nonmagnetic ones, quite a different behavior was
predicted by Aharony. ' Jn this Letter we report
measurement on the dilute ferromagnet LiTbo 3-
Yo 7F4 which for the first time clearly shows de-
parture from the behavior expected from a sys-
tem at marginal dimensionality. The par allel
susceptibility of LiTb» Y, 7F4 corrected from
demagnetizing effects cannot be described by the
Aharony law )( =Ft ~ exp[D in(1/t) j'~s with the uni-
versal parameter D- 0.11795 in the temperature
range 10 s& t & 10 ' even by substituting 1/t by
tgt, taking approximately into account high-order
terms. As the crossover between "pure" behav-
ior to asymptotic "random" behavior is not well
known, we have described our experimental re-
sults by a power law with the unusual large ef-
fective exponent y =1.80.
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