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Tunneling measurements have been performed on Nb-doped and reduced superconducting
SrTiO3. Beyond a certain carrier concentration, when a second conduction band gets filled,
a distinctive double-gap structure is observed in Nb-doped samples. Its sharpness and
anomalous temperature dependence can be related to the onset of two-band superconduc-
tivity in accordance with theoretical expectations. The observation of a single gap A
=~ 1.76 kT, in reduced SrTiO; is attributed to enhanced interband scattering.

PACS numbers:

Two-band superconductivity (2BS) offers the
promise of observing novel effects within a single
homogeneous superconductor. Hitherto, some of
their analogs have only been studied with sepa-
rate superconductors coupled through a barrier
or interface. In this Letter, we report distinc-
tive features in the tunneling characteristics of
Nb-doped SrTiO;, which represent the first clear-
cut experimental evidence for 2BS. This opens
the door to exciting nonequilibrium experiments
involving coupling between order parameters and/
or quasiparticles in different bands.

The unique properties of superconducting » -
type SrTiO, have stimulated numerous investiga-
tions.'"® The possibility of 2BS, however, has
not so far been considered. Superconducting
SrTiO, is an ideal candidate for 2BS: (i) Accord-
ing to Mattheiss,* the two lowest conduction bands
of the low-temperature phase of SrTiO, occur at
the center of the Brillouin zone (kK =0) and are
only 20 meV apart. Therefore, by increasing the
amount of doping, one expects to fill the first,
and then the second band, within a range of car-
rier concentrations n~10°-10%° cm™2, where the
material is superconducting.!”® (ii) The unusally
large dielectric constant of the nearly ferroelec-
tric host drastically reduces scattering by ionized
donors. Interband scattering may therefore be
weak enough to preclude averaging of the energy
gap.

Following a description of experimental details,
we present our results and interpret them within
the two-band model of superconductivity. Finally,
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we discuss some remaining questions raised by
our observations, and explain why they cannot be
due to inhomogeneities.

Free carriers were produced by direct » doping
of Verneuil-grown crystals with Nb, or by reduc-
tion of nominally pure single crystals in a hydro-
gen atmosphere. Neither x-ray diffraction nor
microprobe analysis revealed any foreign phases.
From all samples, 1X1X10 mm? bars oriented
in the [100] direction were cut, and subsequently
bonded to two (current and voltage) contacts.
Tunneling junctions were prepared by cleaving
the bars in air and rapidly touching the fresh sur-
face with the tip of a small piece of freshly cut
indium. This produced rugged contacts with a
thin Schottky layer serving as the tunneling bar-
rier and with leakage currents mostly below 1%.

The samples were cooled in a specially de-
signed fast-loading dilution refrigerator with a
sample cooldown time of ~ 10 min.’ This pre-
vented In diffusion. Measurements of the tunnel-
ing I-V and (dI/dV)-V characteristics were car-
ried out using a self-balancing conductance bridge.

The Schottky tunnel barrier allowed direct de-
termination of the local Fermi enevgy u; (contact
area = 10"® mm?) from the position of the pro-
nounced minimum in the conductance dI/dV at
voltages much higher than any structure due to
superconductivity.® The resistance of the Schottky
barrier could be reversibly tuned in the range
1 Q to 1 MQ by application of an appropriate elec-
tric field while the junction is being cooled. All
features reported below were independent of the
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barrier resistivity. Those attributed to super-
conductivity in SrTiO, vanished at the same tran-
sition tempevature T,. For the Nb-doped sam-
ples, our results are distinctly different for u;
smaller and larger than a certain p,.

In all reduced, as well as in the low-u; Nb-
doped samples, the dI/dV characteristics are
close to those of an ideal asymmetric tunnel junc-
tion between two superconductors (S-S), i.e.,
with relatively sharp peaks at the difference and
the sum of the energy gaps of In and SrTiO,. Suf-
ficiently below T, the difference peak disappears;
a shift in the remaining peak is attributed to the
temperature-dependent gap, A(T), of SrTiO,,
since A;, is constant in that range. The depen-
dence A(T), the ratio A(0)/kT,~ 1.76, and the
shape of the tunneling conductance are as expect-
ed from the BCS theory, although dI/dV is some-
what broader in the reduced sample IV and in
some of the Nb-doped samples (4 and 5) near .
Samples 4 and 5 also show an additional small,
smeared-out maximum at about A +2A(T) to
which we revert later.

Beyond a cevtain concentration, i.e., g >, ,
the concomitant appearance of sharp double peaks
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FIG. 1. Normalized tunneling conductance of Nb-
doped SrTiO;-In junctions in the range of two-band
superconductivity (ug >y, = 32 ueV) measured at T =100
mK. Only the portion of the voltage scale near the sum
of the gaps of SrTiO; and In is shown. The latter could
be determined within + 2 ueV for a given sample and had
a mean value A, =535 ueV.

above Ay, in dI/dV of the SrTiO,:Nb samples is
quite dramatic (see Fig. 1). These structures
are consistent with S-S tunneling from a super-
conductor with two different well-defined energy
gaps A, and A,. The smaller gap A,(T) vanishes
at T, together with A (T), and exhibits a remark-
able temperature dependence never observed be-
fore (see inset in Fig. 2).

The dependence of T, and of A or A, and A, for
T~0.2 T, on yy (or n) is summarized in Fig, 2
for all our samples. In the Nb-doped ones with
Ug > I, A, appears to continue smoothly the A (uy)
dependence observed for up<py,, whereas A, rises
steeply from zero beyond u.~ 32 meV. For sam-
ples 7 and 8, the measurements indicate a strong-
er variation of 7', than of A,, thus making the ra-
tio A,(0)/k T, anomalously small.

The marked u; dependence suggests an unusual-
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FIG. 2. Superconducting order parameters A; and
A, (inferred from peaks in the measured tunneling
conductance of n-type SrTiO3-In junctions at T~ 0.2 T :
open circles, reduced samples; open squares, Nb doped;
curves drawn as an aid to the eye only), transition
temperature T, and Agcs = 1.76 T, (crosses) vs
Fermi energy ur measured on the same junctions. The
corresponding carrier concentrations estimated from
Hall measurements are indicated on the top scale. The
dependence T (z) for the reduced samples is essentially
that observed in previous work (see Ref. 1). The inset
shows the temperature dependence of both order param-
eters measured on sample Nb 8.
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ly strong influence of band structure on supercon-
ductivity in SrTiO,:Nb. The Fermi surface of n-
type SrTiO, calculated by Mattheiss* for tempera-
tures well below the cubic-tetragonal transforma-
tion exhibits two sheets centered at k=0. The
lowest conduction band gives rise to an anisotrop-
ic surface similar to a “starfish” with four arms
growing in +[100] and +[010] directions perpendic-
ular to the tetragonal axis as the band gets filled.
The second band is shifted up by = 20 meV; it
gives rise to a nearly isotropic, ball-shaped sur-
face within the starfish. For sufficiently weak
electron scattering by defects, these features
should induce the following peculiar superconduct-
ing properties: an anisotropic energy gap, Az,

in the first band, and, for u;>20 meV, two order
parameters A, and A,, each corresponding to a
given band.

We attribute the appearance of the double struc-
tures for u; > u, to the development of 2BS on fill-
ing the second band. The experimentally found
.~ 32 meV appears reasonable, in view of the
approximate nature of the band-structure calcu-
lations.* Furthermore, the temperature depen-
dence of A, and especially A, indicates a signifi-
cant coupling between these two quantities. This
interpretation is in accord with existing calcu-
lations of the T' dependence of the order param-
eters” A, , and of the tunneling density of states®
N(E) for a model two-band superconductor.

This model involves five parameters: the ratio
v =N,/N, of the normal-state densities of states
in the two bands, the total inferband scattering
rate ' =(1 +V)T',,, the interband coupling U,,
=vU,, and the hypothetical transition tempera-
tures T, ,>7T,, for U,, =T',, =0. The intraband
scattering rates I'y, and I',, are assumed large
enough to make A; and A, constant in the respec-
tive bands. The sharpness of the peaks shown in
Fig. 1 implies that " is small, viz., ZT <kT,,,®
in all Nb-doped samples with u;> ., since the
model then yields an N(E) like the superposition
of the density of states of two uncoupled super-
conductors with different gaps almost equal to
A, and A,. From the positions of the two peaks
in dI/dV, A, and A, can be determined quite ac-
curately, and the ratio of their intensities rough-
ly reflects v. Because of the steep rise of N,, v
and T, should rapidly increase for uz >u,,
whereas T,.,, U,, and I',, are expected to vary
smoothly with ur near y,. A strong increase of
A, and of the intensity of the corresponding peak
in dI/dV relative to that of the higher peak is
therefore expected. This is exactly the behavior
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apparent in Figs. 1 and 2.

An upper bound for T' may be found from the
relaxation time 1/7 with use of the single-iso-
tropic-band formula for the conductivity, ¢ =ne?r/
m*, and a mean effective mass m* =1.6 m,.*
This yields 7/7~400 peV for a SrTiO,:Nb sample
with n=7X10'° ¢m™3 whose resistance has been
measured carefully.® Since 1/7 overestimates I
considerably, whereas kT, ,>kT . >0.6A,~ 40 ueV,
the condition ZI'< kT, , may well be satisfied in
the Nb-doped samples.

Whereas T,= T, for small v and I', 7', should
be significantly depressed below T',,, and the two
peaks in N(E) should broaden and then merge into
a single one at E~ Ays=1.76 2T, for sufficiently
large #T'/kT,. The resistivity of »educed SrTiO,
is about four times larger than that of Nb-doped
samples with a comparable carrier concentra-
tion% I should also be larger. This is in line
with the smaller T, and the single broader peak
in dI/dV observed in the reduced sample IV.

The two-band model cannot explain why A~
=1.76 kT >4, for up>pu, in samples 7 and 8; ac-
cording to existing calculations A5 should lie
between A, and A,.,® Moreover, interactions with
different frequency cutoffs can be absorbed into
renormalized ones with equal cutoffs!®; there-
fore, the anomaly cannot be attributed to other
mechanisms contributing to superconductivity
in the second band, e.g., acoustic plasmon ex-
change.'! One way out of the dilemma is that
there is another A > Ay, associated, for in-
stance, with the armtips of the starfish, and
which has no noticeable effect on N(E), because
of strong scattering. Such a possibility is sug-
gested by the Fig. 5 of Ref. 8 and by the addition-
al broad structure observed in samples Nb 4 and
Nb 5 (with up <y,). This structure may be attrib-
uted to gap anisotropy in the first band, and to
preferential tunneling from different zones (e.g.,
the central body and starfish) over which Aj; is
approximately constant (minimum or maximum),?

Finally, we rule out more mundane explana-
tions of the double peaks in SrTiO,:Nb samples:
(i) A graded layer with reduced » and A might .
exist behind the Schottky barrier, but could not
give rise to a sharp structure in N(E) below the
main gap, a fortiori, only in high-concentration
samples. (ii) Suppose that small (< 1-yum) grains
of another superconducting phase, e.g., TiO,,
NbO, , or more complex oxides,'® would form in
such samples. They could give rise to an extra
sharp peak in N(E) (presumably that at A, which
grows with increasing Nb concentration) only if
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the size of the grains exceeded their coherence
length on the average. Otherwise, the expected
spread in sizes and separations would induce a
spread in A,. In the former case, A; and A,
should tend to zero at T',,# T, (for intermediate
temperatures, a residual proximity effect might
induce a tiny A,). However, the observed de-
pendence A,(7) indicates a stronger coupling
which would be incompatible with two sharp peaks
in N(E).™

In summary, our tunneling measurements on
superconducting SrTiO,:Nb are consistent with
the onset of two-band superconductivity with two
coupled order parameters in the range expected
from Mattheiss’s band structure. The absence of
a double-peak structure in dI/dV and the smaller
T, in reduced SrTiO, are attributed to enhanced
interband scattering.
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