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Chaos in a Laser System under a Modulated External Field
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It is shown that a single-mode laser under the influence of an external modulated field
may shower chaotic behavior. The poorer spectrum and the separation distance are cal-
culated to demonstrate the existence of chaos.

PACS numbers: 42.55.-f

Recently, chaotic behaviors have been reported
on various systems. ' ' For a single-mode laser
system Haken4 showed that the laser equations
reduce to the Lorenz equations with an appropriate
scaling of variables. However, the realization
of the Lorenz-type chaos in the laser system is
difficult because of some restrictions on param-
eters. Graham' showed that a reduction to the
Lorenz equations may also be obtained for a
mode-locked pulse train in an infinite laser sys-
tem or in a ring laser, but the periodic bound-
ary conditions in the latter case select periodic
solutions only. For a laser system under an ex-
ternal field, Rabinovich reported that a chaotic
behavior appears for a certain range of param-
eters. ' However, for values inside the region of
parameter space quoted in Ref. 6, we have not
been able to reproduce his chaotic state. In the
present note, chaos is numerically shown to exist
in a laser system under a modulated external
field.

We will use the approximation of a spatially-
homogeneous field and assume single-mode opera-
tion. For simplicity we will assume that the reso-
nance frequency of the two-level atoms and the
cavity frequency are equal. Then the laser equa=
tions read'

dE/dt = —z(E —E,„,) +igP,
dP/dt= —y~P —igEa,

do/dt = -y ~~(o- o,) —2ig(PE* —P*E),
where E, P, and 0 are the complex light ampli-
tude, the total complex dipole moment and the in-

version, respectively. We consider a laser sys-
tem under a time-dependent external field E„,.
We approximate Eq. (1) by assuming z «y, y~~.

Then the adiabatic elimination of the atomic vari-
ables, P and o; yields

dx/df = —inx+(z —1)x+A(~) (2)

with z =R/(1+ ~x~'), where we put, t=v/K, R
= g oo/y~, E=(y~y~~) xexp(iQT)/2g, Ee„,=(y~y~~)
&A(r) exp(i07)/2g. The parameter 0 is the de-
tuning of the external field frequency from the
cavity frequency. The modulation of the external
field is represented by A(T) We wil. l first con-
sider the case, A(T) =a (= const). A steady state
of Eq. (2) is obtained by putting the right-hand
side equal to 0. We denote the steady state-value
of z as z, . This steady state loses its stability
when a root of the equation,

z' —2z ' +~[(z,—1)'+0'] =0z -g z
R B 5z,

has a positive value, where z, satisfies

R =z, +a'z, /[(z, —1)'+0'].
From Eqs. (3) and (4) it may be readily seen that
for a sufficiently large R the steady state always
becomes unstable. For small a the instability
occurs at R = 1+2a'/O'. The instability is of hard-
mode type. Therefore, we can expect that above
a certain value of R the time evolution of Eq. (2)
shows a limit-cycle behavior. The phase dia-
gram of Eq. (2) is shown in Fig. 1. Above (below)
each curve the limit cycle (the steady state) ap-
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FIG. 1. The phase diagram for nonmodulated ex-

ternal field. Each curve corresponds to a different
value of ~. Above each curve, a limit cycle appears.
The type of the transition from the steady state to the
limit cycle is of the second order (dashed line) or of
the first order (solid line).

FIG. 2. The poorer spectrum &~ of the periodic (&'

= 0.03, the left figure) and the chaotic (a' = 0.036, the
right figure) states. The sharp peaks at the frequency

= 0.45 in both figures correspond to the frequency
of the external modulated amplitude. The resolution
is 2&/(1024~ 30& 0.025). The average is taken over
the sequence of the spectrum 50 times.

pears. In other words, for fixed Q and param-
eters corresponding to the region above the curve
the electric field is spontaneously modulated al-
though the incident electric field has a constant
amplitude.

Now let us turn to the case of the modulated ex-
ternal field. The modulation amplitude A(T) is
assumed to have the following form,

A(T) =a+a'cos(Q'T).

To proceed further it is useful to choose a par-
ticular set of parameters. We adopt here 8 =2.0,
Q=0.5, a=0.4, and Q'=0.45. We have numerical-
ly studied the time evolution of Eq. (2) by 4 meth-
ods: (I) Poincard map, (2) Lorenz map, (3) pow-
er spectrum, and (4) separation distance. We
have adopted a modification of the numerical inte-
gration method given in Lorenz's work. ' When a'
= 0 the reference system shows a limit-cycle be-
havior with the angular velocity Qp 0.2714. As
a' increases, the system behaves quasiperiodical-
ly with two characteristic frequencies, 0' and Qo.

By increasing a further the limit cycle is en-
trained by the external force A(r). As Q,/Q'
—=0.6031 =- ~5, the entrainment occurs at a rational
frequency of Q', +Q'. Therefore, when we ob-
serve the time evolution at time intervals 2w/Q ',
a quintuple cycle (we will use this terminology
hereafter) is seen to be realized. This periodic
state loses its stability at a' ~ 0.339 to lead to
a chaotic state. The power spectra of the period-
ic and the chaotic states are shown in Fig. 2. A

broad peak is clearly seen in the chaotic state.
To verify this behavior we plot the separation dis-
tance of two initially adjacent points. The method
is the following: In an aged system (after a large
number of steps the phase point can be consider-
ed to be trapped in the attractor) we consider a
phase point and choose another point which is
separated from this point by a small distance. In
the present case the real part of x is chosen sep-
arated by the distance 0.00001. Then the dis-
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FIG. 3. The separation distance D(v) of the hvo ini-
tially adjacent points against the time ~. The loga-
rithmic value of D(~) is plotted. Three curves corre-
spond to the quasiperiodic (a' = 0.01), the periodic
(+' = 0.03) and the chaotic (&' = 0.036) states, respective-
ly.

tance, D(T), between these two points is plotted
in Fig. 3 versus the time 7. In the quasiperiodic
state (a'=0.01) it can be seen that the two phase
points remain close to each other. In the period-
ic state (a' = 0.03) the phase points approach one
another as the system evolves. The reason is
that this periodic state appears due to the entrain-
ment of the phase point by the external field, and
the relative phase of the phase point to the ex-
ternal force A(v) becomes fixed on the attractor.
Therefore, the two phase points coincide with
each other as 7 —~. On the other hand in the
chaotic state the two phase points get more sepa-
rated as time goes on. The saturation behavior
appears after z-400. This is due to the fact that
the size of the strange attractor (in the present
case it is of the order one) is finite. This be-
havior of D(T) is quite in line with the other exam-
ples of chaos. '

At sufficiently large a' (a 0.15), the time evolu-
tion of the system is periodic with the frequency
O'. Between this completely entrained state and
the chaos mentioned above there appear various
states. ' The bifurcation scheme shows a window
structure resembling the structure found by
Tomita and Kai. ' For example, the system has
a octuple periodic state at a'= 0.05 and a chaotic
state at a' = 0.07. The detailed bifurcation scheme

with the variation of a' as well as with that of Q'
is interesting, but is beyond the scope of this
short note.

If the set of parameters, 0, a, and R, is chos-
en such that the system is deep inside the limit-
cycle region, it becomes harder to find chaos.
The reason may be that near the transition region
between the steady state and the limit-cycle state
the orbit of limit cycle is easily affected by the
external force, while deep inside the limit-cycle
region a strong modulation of A(r) is necessary
to change the limit-cycle orbit and it may violate
the inequality a &a'.

The existence of chaos studied in the present
note seems not to depend critically on the particu-
lar approximation (the adiabatic approximation)
made at the beginning. Sufficiently close to the
transition region between the steady state and the
limit-cycle states we can always expect to get a
bifurcation scheme leading to chaos if only we
choose appropriate values of the parameters to
reach the chaotic state.
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For increasing &', the bifurcation scheme from the
chaotic state (a' = 0.036) to a periodic one is of the
so called May type (Ref. 2). We have confirmed the
periodicity up to a 32 periodic state.
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