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Pressure Study of the Metal-Insulator Transition in TmSe
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High-pressure resistivity measurements on mixed-valence TmSe indicate a new elec-
tronic phase transition near 30 kbar at liquid-helium temperature. In the paramagnetic
phase, the p-T curve shows unexpectedly small pressure dependence, in contrast with
the predictions of a simple valence-change model. The onset of the aniferromagnetic
ordering triggers a metal-insulator transition for pressures in the range 0-30 kbar. The
new high-pressure phase is characterized by a steep decrease of the resistivity below
3.7 K at 32.5 kbar.

PACS numbers: 71.30.+h, 72.15.Qm

Much of the experimental and theoretical work
in mixed-valence systems has involved pressure-
induced valence changes. ' The most famous ex-
ample is, of course, the semiconductor-to-metal
transition in SmS, where the average valence of
samarium changes precipitously from + 2 to
about 2.8.' In the case of TmSe which is inter-
mediate valence (IV) at p =0,' Guertin and co-
workers have interpreted their magnetization re-
sults as a consequence of an increase in the triva-
lent character of thulium under pressure, and
predicted completion of the Tm +- Tm'++5d con-
version near 20 kbar. In their picture, deviations
from stoichiometry and external pressure pro-
duce similar effects which can roughly be scaled
with the values of the lattice parameter ao.

In this Letter we report the first experimental
investigation of the low-temperature resistivity
of TmSe under hydrostatic pressure up to 32 kbar.
The resistivity is a crucial parameter particular-
ly in mixed-valence systems where the intinerant
electrons are directly related to the ratio of the
valence states. Previous studies on Tm„Secom-
pounds wxth varying composition~ have suggested
that at I' =0, the stoichiometric compound is in-
sulating at 0 K. Since, for an integral number
(n, ) of electron carriers per magnetic center, "'
the Kondo lattice model predicts a metal-insula-
tor (MI) transition at 0 K, the crossing from an
intermediate-valence state (IV) to the trivalent
state appears particularly significant. Further
comparisons can be made theoretically with the

double-exchange model developed by karma' and
experimentally with the studies performed on non-
stoichiometric samples. ' '

Our experiments were performed on a nearly
stoichiometric sample (sample 1 of Ref. 4, a,
=5.712 A; T„=3.46 K) down to 1.5 K in a pres-
sure cell' working up to 32.5 kbar, then down to
30 mK using a clamp" (P,„=6kbar) screwed to
the mixing chamber of a dilution refrigerator.
The thermalization of the sample was checked
down to 30 mK by comparing the zero-pressure
data taken with the sample either in the clamp or
immersed in the dilute 'He-~He phase inside the
mixing chamber.

The room-temperature resistivity, in accord
with earlier results of Batlogg et al. ,' decreases
with an initial rate of —1.26%%uo/kbar. Figure 1
shows the variation of p between 100 K and T N

for several applied pressures. When the tem-
perature decreases, the reduction of p under
pressure is overcompensated by an enhanced ne-
gative temperature coefficient. As a consequence,
the curves cross one another between 15 and 35
K. The slope i dp jdln&i increases quasilinearly
from 0.46 mQ cm at P =0 to 0.63 mQ cm at 20
kbar [Fig. 1, inset (b)]; at higher pressures, the
variation becomes slower, most likely due to the
approach to the 3+ state. The most surprising
feature of these results is that, even at the maxi-
mum pressure of 32.5 kbar, the resistivity of
TmSe differs drastically from that of normal tri-
valent ions in compounds such as Gd"Se. This
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FIG. 1. Resistivity of TmSe under pressure in the
paramagnetic phase. Inset (a): p(300 K) vs pressure.
Inset (b): ln& slope vs pressure.

is in contrast to the earlier magnetization work
from which thulium was predicted to become tri-
valent near 20 kbar. In particular, we want to
emphasize the difference between the effects of
pressure and deviations from stoichiometry.
In the latter c-ase the decrease of the lattice pa-
rameter and then of the divalent admixture was
accompanied by a strong reduction of the resis-
tivity anomaly. Our results are in good accord
mith recent neutron diffraction experiments '
which yield an anomalously large compressibility,
characteristic of the IV state, even at 20 kbar.
At all pressures p (4.2 K) roughly corresponds to
the largest possible resistivity for 10%0 independ-
ent scattering centers in a metal assuming a max-
imum cross section (unitary limit). This would
indicate that TmSe in all measured pressure
ranges is near an electronic instability; the ap-
pearance of the antiferromagnetic ordering at TN
leads to an insulating phase as long as the 1V
character (the d-f mixing) is sufficiently strong
(P (30 kbar) and to a metallic phase for P =32
kbar.

The results in the antiferromagnetic (AF) phase
are shown in Fig. 2. Around &» all the data
points are not shown but are represented by the

FIG. 2. Resistivity of TmSe under pressure in the
antiferromagne tie phase. Inset (a): Magnetic phase
diagram of TmSe under pressure; the new

' metallic"
region (T &T*) is tentatively sketched by the hatched
area. Inset (b): Very-low-temperature data.

full lines. In the following, the Neel temperature
mill be defined as at zero pressure by the posi-
tion of the resistivity jump which coincides with
the susceptibility peak (at zero pressure the dif-
ference in TN defined by the peak in Bp/& T or the
jump of p is less than —0.05 K). The pressure
dependence of &N is in agreement with the prelim-
inary results reported by Vettier et'.~ from
neutron diffraction experiments. The initial in-
crease is followed by a turnover at the highest
applied pressure of 20 kbar. Up to 13 kbar, &N
increases with pressure with an initial slope
dTN/d& = +0.085~ 0.010 K/kbar [Fig. 2, inset (a)]
in accord with previous susceptibility~ and neu-
tron ¹&~action measurements. Simultaneously,
the amplitude of the resistivity jump is enhanced,
and on cooling to very low temperature, p(T) ris-
es much faster than at ambient pressure [Fig. 2,
inset (b)]. It is important to realize the magni-
tude of this effect: At 30 mK, the resistivity at
6 kbar reaches 0.12 0 cm, one order of magni-
tude larger than at P =0, and nearly two orders
of magnitude larger than p (TN) and than the resi-
dual resistivity reported for the nonstoichiometric
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sample' of Ref. 4 with the same lattice parame-
ter. At higher pressures, 13 kbar &P & 29 kbar,
both T N and the resistivity anomaly in the AF
phase decrease gradually. At 20 kbar the data
fall substantially below the curve at P =0. Final-
ly, at 32.5 kbar, a sudden change occurs: the re-
sistivity now decreases rapidly below 3.7 Kdrom
1.4 to 0.8 mQ cm near 1.5 K and the estimated
ordering temperature, &*, defined by the inGec-
tion point of 8p/& T is higher than at 30 kbar.

We have shown that in TmSe, the onset of the
type-I AF structure is always accompanied by an
electronic transition into a semiconducting state
for pressures between 0 and 30 kbar. The pres-
ence of a maximum in the variation of T g with
pressure is a very singular feature: in the mi-
croscopic model of TmSe proposed by Varma, '
one would rather expect a steady increase of TN,
due to the gradual weakening of the ferromagnetic
double-exchange interactions as the concentration
of divalent admixture decreases. We believe that
the maximum of TN is the consequence of the in-
terplay between two phenomena: (i) the magnetic
coupling among the thulium moments and (ii) a
hybridization mechanism which favors the emer-
gence of a nonmagnetic ground state: Similar sit-
uations are encountered in the magnetically or-
dered Kondo-lattice compounds~ and in anti-
ferromagnetic Mott insulators. ~4

Furthermore, the amplitude of the very-low-
temperature resistivity anomaly appears to be
strongly correlated with the variation of the or-
dering temperature under pressure. For exam-
ple, the values of the resistivity at 1.6 K (Fig.
2) go through a maximum at approximately the
same pressure as TN. Quantitatively, the resis-
tivity in the ordered phase at any pressure can-
not be described by a simple activation law p

p, e xp(& k/~ T) ~ However, if we introduce ex-
pliciQy the magnetic character of the transition
by taking b, =b.(T) proportional to the intensity of
the (100) magnetic line observed in Ref. 13: A(T)
=6(0)I(T)/I(0), we obtain a good fit for the resis-
tivity between TN and 0.5TN with b, (0) =2.3, 3 ~ 2,
and 2.5 K for P =0, 6, and 20 kbar, respectively.
These values for the energy of the gap reflect the
occurrence of a maximum in the insulating char-
acter of AF TmSe at about 10 kbar. Below 0.5
& T'» such an analysis fails, but a lap vs lnT plot
shows a power-law dependence of T "with n =0.2,
0.4, and 0.6 for P =0, 4, and 6 kbar, respective-
ly. The physical origin could be related to the
presence of disordered centers (vacancies, im-
purities) in an insulating state. " The possibility

of an intrinsic number of self-trapped defects
may be an open question.

The metal-insulator transition cannot be re-
garded as an example of a Slater-type insulator. '~ ~'

The opening of a very small gap in all directions
of k space seems very unlikely here. " The IV
character emphasizes the role of d fhy-bridiza-
tion and in the case of TmSe of magnetic correla-
tions.

The magnetic behavior of TmSe is character-
ized at low temperature by a Curie law, Korringa
relaxation, and a lnT increase of the resistivity
in the paramagnetic regime just above &N. All
these properties seem to correspond to the pic-
ture of a localized moment interacting with the
conduction electrons via a Kondo-type exchange
Hamiltonian. The relevance of Kondo-lattice
models' ' is therefore an appealing possibility
for the gap opening. However, its disappearance
when the validity of such a model is apparently
fulfilled (n, =1) raises questions of the micro-
scopic basis of the Kondo-lattice approach or of
a change in the magnetic structure which must be
checked by neutron diffraction experiments. We
point out the difficulty of extrapolating the Kondo
effect of a single impurity to the lattice case with-
out including the IV phenomena. The Kondo ef-
fect for a single impurity is due to the combined
spin and orbit resonant scattering produced by
the impurity center; extrapolation to a lattice in-
volves the coupling between 4f localized and 4f
delocalized states, i.e., the IV phenomena. Fur-
ther theoretical investigation must prove the
microscopic basis of the Kondo lattice and its
range of applicability. '

Our observation of the disappearance of the MI
transition at 32.5 kbar in the vicinity of the pres-
sure change to the trivalent state emphasizes
the central role of the d-f hybridization. The oc-
currence of a gap due to such a mechanism, first
suggested by Coqblin and Blandin20 and discussed
by Mott,"has been studied recently in more de-
tail by Martin and Allen2' for the special case of
SmB, where the gap opening appears now mell
established. ' 4 In agreement with the prediction
of Martin and Allen, a gap does not occur for the
rocksalt crystals of TmSe in its paramagnetic
and induced ferromagnetic phases4; it occurs in
the AF state because of the symmetry breaking.
In contrast, the compound TmS is close to the 3+
state and is metallic. ' It must be pointed out that
the order of magnitudes of the quasilogarithmic
increase of the paramagnetic resistivity observed
for TmSe and for the collapsed phase of SmS at
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low pressure below 50 K are similar. " The re-
cent conclusion of Stevens2' that low excited states
of IV SmS form a continuum must be confirmed
by further experiments.

In summary, our results indicate that the val-
ence change in TmSe is less sensitive to pressure
than previously assumed, and quantitatively dif-
ferent from the effect of nonstoichiometry. They
do not support the double-exchange picture and
the Kondo-lattice model. They suggest a strong
competition between magnetic interactions and
hybridization processes in the vicinity of &N.

They are in agreement with the conclusions of
Martin and Allen and Coqblin et al. ' that a gap
is unlikely in a ferromagnetic IV state and may
not be precluded in an AF phase. Finally, they
provide the first experimental evidence for a new
metallic ground state above 30 kbar which should
stimulate further investigation of the field phase
diagram of TmSe under pressure and of the pres-
sure change of the crystal field.
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