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ent a *He surface to the H,. At our current ex-
perimental temperature range the thermal re-
sponse of the HSC is sluggish compared with pure
‘He because of the substantially higher vapor
pressure. Lower temperatures will relieve this
problem.
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The low-temperature tunneling levels observed in glasses are discussed in terms of
the free-volume model. As the system falls out of thermodynamic equilibrium near its
glass transition temperature T, , liquid clusters are frozen in. This Letter proposes
that voids are formed within the liquid clusters as they in turn freeze at lower tempera-
tures. Approximately 10™* such centers form per atom, 1% of which contribute to the

heat capacity below 1 K.

PACS numbers: 61.40.Df, 64.70.Ew, 71.25.Mg

Anderson, Halperin, and Varma' and Phillips®
proposed to explain the linear temperature de-
pendence of the specific heats of glasses at low-
temperature via tunneling centers. They as-
sumed that in any glassy system a certain number
of atoms, or groups of atoms, has accessible
two nearly equivalent equilibrium configurations
corresponding to the minima of asymmetric
double-well potentials and tunnels between them.
The model explains many other experjmental ob-
servations.®”® Nevertheless, there is no success-
ful microscopic description of a tunneling center.

© 1980 The American Physical Society

Instead, tunneling is treated via a model Hamil-
tonian for two-level systems representing the
ground states in the two local energy wells, Here
we explore the origin of the tunneling states.

The tunneling states are commonly associated
with a small group of atoms undergoing a local
rearrangement.® The number of atoms involved
is assumed to be reasonably small to minimize
the distance between states in configuration space.
However, the larger the number of atoms, the
easier it is to find two ground states of roughly
equivalent energies. It is believed that this com-
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petition between accessibility and degeneracy
determines the size of the tunneling states.® It
is also suspected that these excitations are uni-
versal among all types of glass formers and an
intrinsic feature of the glassy state.”™®

This universality is essential to any theoretical
model which illuminates their origin, A model
should also describe the relation of the tunneling
states to the glass transition at T, where the sys-
tem falls out of complete thermodynamic equili-
brium?!® and is trapped in a region of configura-
tion space far removed from its crystalline
ground state. The residual entropy of the glass
is a measure of the number of other energetically
equivalent regions into which the glass could have
been trapped. Most of those states are mutually
inaccessible because they are distant in configura-
tion space, but mutually accessible nearly degen-
erate states presumably’? exist. These would be
the desired tunneling states. Behaviors at T=0
and T =T, are thus critically related. How the
glassy state is formed directly affects the tunnel-
ing states; both should be describable within the
same theory.

Here we show how the free-volume model can
account for both the glass transition and tunneling
states. The basic ideas employed do not depend
on any specific details of the free-volume model
and apply outside the context of any particular
model.

We't!2 have developed a free-volume model of
the thermodynamic and kinetic behavior of dense
liquids and glasses. 'Our results for the viscosity
and heat capacity are in both qualitative and quan-
titative agreement with experiment. We propose
to describe here the tunneling states within our
generalized free-volume model. In this model
the liquid-glass transition results from the reduc-
tion of the free volume of the amorphous phase
near T,. One associates a local volume v of
molecular scale with each molecule. The excess
of v over a critical value v, is regarded as free.
Molecular transport occurs when voids of volume
greater than the molecular volume v,, form by
the redistribution of free volume.™

At low temperatures and high density each mol-
ecule is restricted primarily to movement within
a cell or cage defined byits nearest neighbors;
the local volume is simply the cage volume.,!!
The local free energy of a cell depends only on
its volume, f=f(v); the total free energy is'!

F=N JP(W)[f(v) +£T1nP(v)]dv - TS,, (1)

where P(v) is the probability of volume v and S,
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is the communal entropy. For T near T,, the
contributions of curvature to f(v) are small com-
pared to kT, near its point of inflection; we can
approximate f(v) by!!

() Tor v =092, v, (2

fo+rskv,—v)P+tlv-v,), v=v,.

Those cells with v >v_, we call liquidlike and those
with v<v,, solidlike. The fraction of the liquid-
like cells is p. Only liquidlike cells have a free
volume vy,

VpEU -V, V>V, (3)

From the linearity of f(v) for v>v,, the local free
energy 2 ,; f(v,;) contributed by liquidlike cells de-
pends only on the average v; among the liquidlike
cells. Thus the free energy is unchanged by any
free exchange of free volume among the liquidlike
cells. Such an exchange takes place only between
liquidlike cells which are nearest neighbors and
which have a sufficiently large number, =2z, of
other liquidlike nearest-neighbors that the vol-
umes of any neighboring solidlike cells are not
constrained to change simultaneously. A new
type of percolation problem is defined in which a
liquidlike cell is in a liquidlike cluster only if it
has z neighbors which are also liquidlike.™

Atoms diffuse when a fluctuation in cellular vol-
ume of atomic size v,, or greater occurs.”® This
arises from redistribution of the free volume
only within a given cluster. The total free volume
within a cluster of size v must, therefore, be
greater than v, for diffusion to occur,

v
Z.l(vi—vc)>vm, v;>v,. (4)
iz

For diffusive motion to occur within a given clust-
er, it size v must be at least v,/7;, T, being the
average free volume within a liquidlike cluster,

veu,=0,/T;. ~ (5)

A cluster for which (5) holds is a liquid cluster;
each atom or molecule within it moves in time
through the entire cluster. Each molecule finds
accessible the configuration space of every other
molecule in the cluster, which generates the com-
munal entropy.

Liquid clusters of size v>v, are frozenin at T
= T, because of the finite cooling rate required
to avoid crystallization. In those clusters, large
(~atomic size) displacements can occur for T
= T, by the coupling of translational motion and
density fluctuations. For temperatures near T,,
the curvature in f(v) is negligible, and the local
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free energy is independent of the relevant con-
figuration coordinates. However, when T« T,,
this curvature becomes significant and gives rise
to local energy minima separated by saddlepoint
barriers on the order of 2T, in size. The energy
scale is set by T, since it is near T, that the
system falls out of equilibrium, freezing in po-
tential variations of at most this size. This is
quite general and does not depend on the free-
volume model. As freezing proceeds, the system
moves into one of its many total-free-energy
minima. The most probable pattern is a freezing
inward into the cluster from the interface with
the solidlike or glassy regions with no significant
relaxation between the clusters and the solidlike
environment.'? The excess volume Av,=v[(v,-v,)

+Ufj stays within the cluster. v7; is the free
volume which is still freely redistributed at T
<T,; Vv,—,) is the thermal expansion of each
cell required to reach the liquidlike range. Some
fraction of v(v,—- v,) becomes available for redis-
tribution as the cluster freezes into the minimum.

The freezing of a liquid into a glass requires
atomic movement, which occurs by the concen-
tration of the free volume into ephemeral voids of
the size v,.'"® This process can be regarded as
a diffusion of the void away from the interface
into the interior where it becomes trapped as
the freezing is completed. For each v,=v,/7;
atoms one void of volume somewhat greater than
v, forms.

The number N ; of these voids present at low T

isltl

. rav, !t sv, "1
NT~NPz(pfroz)/Vm+N|: E Cuz(pfmz)'*'z ﬁ cuz(pfroz)+"']y (6)

V=VUpy V=20V,

where N =pa,(p)N is the total number of atoms in
clusters, a,(p) <1, P_(p) is the probability of
being on the infinite cluster, C,,(p) is the cluster
distribution and p ¢, is the fraction of liquidlike
cells frozen at T= T,. Although the quantities
a,(p), P,(p), and C,.(p) have not yet been deter-
mined theoretically, we can estimate useful upper
bounds on v,, and N,. Our best fits'' to the meas-
ured viscosity data for six glass formers give v,
=30 at T,. That is, for each 20~40 atoms within
a cluster, we expect to find a void of the size ~uv,,.
Having chosen the percolation threshold value of
p.=0.15, we found that p 1, ~0.2 was a typical re-
sult from our relaxation studies'? of the specific
heat near T,. If we set @, (p fr) ~0.1 and p (9 tr,)
~0.1, we find N, /N~107%, A more precise esti-
mate must await a study of the cluster distribution
function C,,(p). Our relaxation theory'? indicates
that p¢,,, andtherefore Nyshouldbe essentially inde-
pendent of the cooling rates used to produce the glass.

We assert that these voids are the tunneling cen-
ters. Any one of the neighboring atoms can move
into the void, but, in contrast to the crystal, the
void itself, and the configuration of the surround-
ing atoms, is irregular. Such motion can be ex-
pected to be substantially easier for one particu-
lar atom. That atom then tunnels into the void by
multiparticle tunneling along a suitable one-dimen-
sional path. Ignoring path curvature, we have for
the effective Hamiltonian,

H =§—;-+ Vo) + 5 $hns(a) + <<I>0(x), §%¢o(x>)

=p*/2u+ V(x), (7)

provided the tunneling energy separations are
much smaller than the mean phonon frequency
wi(x). Here p is the mass of the atom, V,(x) is
the equilibrium potential energy, ®,(x) is the
ground-state eigenfunction for all the remaining
degrees of freedom A, and the integration in the
last term is over those degrees of freedom.
V(x) is of the general form assumed in Ref. 1.
There is tunneling between the two minima, with
a tunneling energy

Ag=lw et (8)
and energy
E=%(A%+A2)Y2, (9

relative to the mean energy 3fiw, above the lower
minimum. Here A is the splitting of the lowest
two energy levels. An estimate of A for the sym-
metric well case can be obtained by using the
triangular barrier approximation, which gives

A=(d/M[2WV - thw,)] V2, (10)

where d is the separation in x of the two minima.
Because the liquid clusters freeze in at Ts T,,
the energy scale of A is set by T,. Either of the
two canbethe lower sothat Ahas aroughly Gauss-
ian distribution around zero with a rms value for
which T, sets the scale. |A| can be represented
as distributed over a rectangular distribution of
width = T,. Since w, is a typical vibrational fre-
quency, it will be on the same scale. V is also
governed by the same scale. Values of V so close
to 3fiw, that A is small enough for A% = A% accord-
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FIG. 1. Probability distribution P(A) vs A.
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ing to Eq. (10) are, therefore, improbable. Con-
sequently, we almost always have A, < |A|, and
the density of states for the tunneling levels is
given by the distribution of | A].

At low T, the values of |A| important for the
specific heat are ~27T «<kT,. We can restrict our-
selves to the case A=0 in estimating A and use
Eq. (10). In estimating A we are thus dealing
with a void containing two energetically equivalent
positions for a given atom. If it were a vacancy in
a crystal, the value of A so calculated would have
a delta function distribution. The disorder in the
glass smears this distribution, as shown in Fig.
1. For there to be a two-level system, there is
a A, ~5-10"* for each barrier shape. Since
ultrasonic experiments are insensitive to large
A,*® there is an effective cutoff A, “*~ A, +1.
P(A) is found to be essentially constant® between
A i and A “?. From the fast and slow specific-
heat measurements,*® we know that P(A) =0 for
A> Ay and A y<A,=15-20. Therefore, all
tunneling levels contribute to C,, and we can ex-
pect distribution (b) in Fig. 1 to occur. Loponen
et al.’® set limits on the relaxation times 7, for
the coupling of the phonon system to the tunneling
center systems by faster heat-capacity measure-
ments. From their data we infer that 5 usec =T,
<5 msec, which corresponds to A, =12 and
A =17, consistent with the previous estimates
and Fig. 1(b).

Since all A contribute to C,, we can calculate
the fraction of the centers N, contributing to C,
at 1 K to be (1 K)/| Ay of the total N,. Assum-
ing Ap.x ~100 K, we find N,/N~107% in good
agreement with the data.® We are unable to esti-
mate the A value for the peak in P(A) or A .
which involves solving a multiparticle tunneling
problem without knowing details of the configura-
tion.

The essential point of our free-volume picture
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is the flatness of the free energy as a function of
the cellular volume on the scale of RT for T = T,.
It is this feature only which we invoke to explain
the existence of tunneling levels. A free energy
flat in localized regions of the configuration space
on a scale of T, simply cannot be regarded as
flat any longer at much lower temperatures. In-
stead T, becomes the bound to the magnitudes

of the variations, i.e., maxima, minima, and
saddle points (enhanced somewhat by thermal con-
traction) of importance for tunneling at low tem-
peratures. In this view, tunneling is a continua-
tion of diffusion. This view is independent of the
particular set of configuration coordinates con-
venient for any particular material and thus por-
trays tunneling as a general phenomenon, univer-
sal in the same way that diffusion, viscosity, and
the glass transition are universal.
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