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The decay of an unstable state by the stochastic time of intersection of a given threshold
is described. This stochastic parameter is characterized by closed moment equations
exactly soluble, whereas previous approaches, in terms of stochastic amplitudes sampled
at a fixed time, led to an open hierarchy of equations requiring approximate solutions.
The relevance of this new description is shown by the fit with the experimental transient
fluctuations of an unstable system.
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.A nonequilibrium system, under the action of
external parameters, may undergo transitions in
the sense that one (or a set of) of its macroscopic
observables have a sizable change. Usually these
changes have been studied by a slow setting of the
external parameter, in order to measure the sta-
tionary fluctuations and their associated spectra
around each equilibrium point. A classification
of these transitions is underway, ' by an extensive
use of sophisticated measurements' or computer
experiments. ' In particular, in quantum optics
one can perform accurate statistical measure-
ments by photon counting statistics; this method
has been used to explore quantum optical transi-
tions. 4

-More dramatic evidence, as well as detailed
information, on the decay of an unstable state,
and its leading to multiple nearby stable positions
with different branching probabilities, can be ob-
tained by applying sudden jumps to the driving
parameter and observing the statistical tran-
sients. ' These should by no means be compared
with stationary time correlations (or their fre-

quency spectra), since a linear regression is no
longer valid, with the nonlinearities playing their
full role. Furthermore, when the system is pre-
pared in an unstable state, no net systematic
forces are applied on its observables, and the
decay is initiated by microscopic fluctuations. In
the first linear part of the decay process the fluc-
tuations are amplified; hence during the transient,
and until nonlinear saturation near the new stable
point reduces them, fluctuations do not scale with
the reciprocal of the system size, as it is at equi-
librium.

A first experiment on the photon statistics of
the laser field during its switch on' has opened
the discussion on transient statistics and the as-
sociated anomalous fluctuations.

Limiting for simplicity the discussion to the
case of one stochastic amplitude ~, the most nat-
ural experimental approach was to measure the
probability density P(x, t) at a given time t after
the sudden jump of the driving parameter. Under
general assumptions, P(x, t) can be shown to obey
a nonlinear Fokker-Planck equation (FPE). A
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,t
= -e—[&(dP]+, , [D(x)P]. (2)

In order to develop an equation for the new densi-

time-dependent solution of the FPE in terms of
an eigenfunction expansion is unsuitable for the
large number of terms involved in the summation,
with the exception of small jumps near threshold'
or the asymptotic behavior for long times. '

Solving for the moments Q"(t)) leads to an open
hierarchy of coupled equations. A two-piece ap-
proximation first introduced for the laser' and
then extended to other cases'" consists in first
letting the system decay from the unstable point
under the linearized part of the deterministic
force, diffusing simultaneously because of the
stochastic forces. This leads to a short time
probability distribution of easy evaluation. Then
we solve for the nonlinear deterministic path and
spread it over the ensemble of initial conditions
previously evaluated in the linear regime.

A recent nonpiecewise treatment consisted in a
1/N expansion of the diffusion term (N being the
system size)." However, this approximation
fails for small jumps above the threshold of in-
stability or for nonlinear diffusion coefficients.

Another approach" was to trace back at any
time a virtual ensemble of initial conditions,
which, inserted in the noise-free dynamic equa-
tions, would be responsible for the actual spread.
This approach reduces the FPE to a diffusion
equation; however, it fails for large deviations
from the Gaussian as shown in a recent general-
ization. "

Here we present an exact approach to transient
statistics which overcomes the limitations of the
previous treatments. In this approach, we con-
sider the time t at which a given threshold g is
crossed as the stochastic parameter, whose dis-
tribution Q(t, z, zz) in terms of the interval be-
tween the initial position z and g~ must be as-
signed. This way, the time is no longer an or-
dering parameter to classify the sequence of
measurements, but an interval limited by a start-
stop operation between the onset of the instability
and the passage through an assigned amplitude
value.

Let P(x, t), with

f„P(~, t)d~=1, (1)

be the instantaneous probability density for the
amplitude ~ which gets unstable under a force
E(~) and a noise delta correlated with a correla-
tion amplitude D(~). P(~, t) is solution of the FPE

ty Q(t, z) the time must be assigned as a single
value parameter of z. This amounts to consid-
ering the problem of the first passage time in
Brownian motion, which is ruled by the Kolmog-
orov equation""

&Q 8Q O'Q
=Z(z) +D(z)

where z is the initial value (t=0), and the nor-
malization is

f, q(t, z)dt=1. (4)

P(z)T. '+D(z) T."=-mT. , (6)

(the prime denoting differentiation with respect
to z). Thus, this way of treating the stochastic
transient leads to a recursive set of moment
equations exactly soluble. In particular, we have
for the mean time T,

T, (z) =f. [e/~(X)] f d~~(x)/D(~),

where we have defined

W(&)
—= expf d)I'($)/D($); (6)

Eq. (7) holds for z~) z and n = -~. For a spread
in the initial position z, T,(z) should be still av-
eraged over the set of z. In a similar way we ob-
tain

2 T|(x)
T,(,)=~~

~

d ' w( ).

When we apply this formalism to the decay of un-
stable states, since D scales with the inverse sys-
tem size, we can expand the above results in D
series and display the first relevant correction
to the deterministic solution. We find immedi-
ately that

() I x j qD" /x (10)

Since we are studying the space evolution of the
time distribution, Eq. (3) must be considered as
a second-order differential equation and we need
two boundary conditions: (i) the final value (the
threshold) z, and (ii) the value n above which
the process has to remain limited during the evo-
lution. " Like for the usual FPE the evaluation of
the moments is formally equivalent to the solu-
tion of the equation, but in this case we can in
principle evaluate exactly all the moments by
means of a recurrence formula. If

T =f t Q(z, t)dt,

we get
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where the first term on the right-hand side is the
deterministic part. Similarly, performing the
approximation for T, we obtain for the variance
DT-=T, —T,' the following relation

»=2f. 'dX&(X)IJ"'(S)

The method here presented overcomes the draw-
backs of the previous approximate treatments. ' "
It allows an exact treatment of instabilities con-
sequent to a sudden jump in the control parame-
ter, as laser transients, "superfluorescence, ""
and spinodal decomposition. "

In order to show the power of this approach, we
have measured the crossing time probability dis-
tributions for an electronic oscillator driven from
below to above threshold. "

Figure 1 gives the mean oscillator amplitude

x=+ (x) =-a,x, «0;
x = &,(x) =tt.x -frx',

(12a)

(12b)

ct&

MS
2

(a)

and its variance versus time as in the usual sto-
chastic treatment of transients. ' Figure 2 gives
the variance of crossing times for increasing
thresholds as defined here. The theoretical fit of
the experimental points is an application of Eqs.
(10) and (11), as briefly discussed in the follow-
ing.

A nonlinear oscillator suddenly driven from be-
low to above threshold at t=0 can be described by
the deterministic equations for the amplitude ~"
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FIG. 1. Transient statistical evolution of an electronic
oscillator driven from below to above threshold by a
sudden jump. No external noise added. Oscillator
parameters: aq= 2.4X10 s, a2=3.2x10 s, b =3.5
x10 V s, D= 0.18 V s . (a) Evolution of the
average amplitude (V) . (b) Evolution of the variance
UV ) . Dots, experimental; line, theory.
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FIG. 2. Transient oscillator as in Fig. 1. Statistical

distribution of the time intervals between the initial
condition and the crossing of the threshold V. (a) Aver-
age crossing time (t); (b) variance 4t ) under the
action of the internal noise (&=0.18 V s ); (c) variance
4tr) for an added external noise (D=8.6 V s ). In
(b) and (c) the scale is in units of 10 9 s2. Dots, experi-
mental; line, theory.
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where c„a,&0 are the linear loss and gain rates,
and b &0 weights the first relevant nonlinearity.

Furthermore, the oscillator is perturbed by a
white noise force of correlation intensity 2D=2ed,
where e is a smallness parameter of the order
of inverse system size N.

The amplitude ~ starts from an initial Rayleigh
distribution with a mean value n'~'/2 (D/ a,

)'~' to
a final value (a, /b)'t' with a residual spread of
rms (D/a2)'~'.

The introduction of the force of Eq. (12b) in the
FPE (2) or the use of the standard piecewise ap-
proximation' "yields the theoretical fits of the
experimental points of Fig. l.

Insertion of Eqs. (12) into Eqs. (10) and (11)
plus averaging over the initial z distribution
leads to the theoretical fits of Fig. 2. An im-
proved fit" is obtained by the evaluation of the
complete Eqs. (7) and (9). In Fig. 2 we give the
variance in time crossings due to the-internal
noise (which scales as 1/N), and the increased
variance due to the application of a large exter-
nal noise of amplitude D,.

The following comments convey some of the
relevant physics: (i) The first term of Eq. (10)
yields an average decay time which scales as
(T,) -ln(a, N), that is, the logarithmic divergence
with the system size N can be compensated by an
initial preparation close to threshold so that ayN
remains finite. (ii) For large systems (N -~)
the variance DT does not depend on z~ and is ap-
proximately given by

aT -a, /4', '.
A constant variance for increasing thresholds
means that the various trajectories are shifted
versions of the same deterministic curve, and
the noise scaling as 1/N plays a role only in
spreading the initial condition. (iii) The introduc-
tion of an external noise Dp adds a fluctuation pe-
culiar for each path, giving a AT dependent on z .

In conclusion, we have shown for the first time
a clear separation between'the role 'of the initial
spread and the noise along each path, and have
introduced a new experimental characterization
of a statistical transient which can be dealt with
in an exact way. A first passage method has also
been used recently to evaluate the mean tunneling
time between the two valleys of a bimodal poten-
tial." Our approach, however, includes higher-
order moments.

A forthcoming paper" exploits this method for
a general classification of time-dependent effects
in experimental unstable systems.

1222

As here presented, the method seems limited
to discrete variables and not applicable to field
problems as diffusive instabilities in hydrody-
namics or chemical reactions. However, by a
suitable mode expansion and selection of the low-
est-threshold modes" one can reduce field prob-
lems to a set of a few discrete coupled variables
which can be dealt with by our method.
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