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vary as r ~ (to —f )' ' where fo is the time at which
the loop disappears. The disclination wall will
carry some excess energy per unit length which,
by integration over the y(X) resulting from Eq.
(2), is given by U~ = 8K/$ ~E' '. U~ has dimen-
sions of force and may be viewed as an effective
line tension acting on the wall locally tangent to
it. The effective normal force per unit length, f,
will be f= U~/~ where r is the local radius of
curvature. The disclination wall will move under
this force which in steady state will be balanced
by a. viscous force per unit length, f„= Pr,—aris-
ing because motion of the wall past a point on the
film is accompanied by dissipative molecular ro-
tation. Equating the two forces gives the equa-
tion r(t) = (U„/-P)/r(t) for the local motion of a
wall. This yields r'(f) = (2U~/P)(t, —f) for a circu-
lar loop which is what we observe. Detailed cal-
culation shows that P=8q/( where g is a 2D orien-
tational viscosity. Hence the collapse rate con-
stant U~/P=K/q independent of E. Our experi-
mental results for K/q, obtained from the slope
of the r~ vs (t, —t) curves, are K/q=9. 2 (N=2),
7.3 (N=3), 6.2 (N=4), and 5.0 (N= 5); all are
a1.0 in units of 10 ' cm'/sec. These lie between
K~ jq~ and K, jq, previously obtained from light

scattering' and are independent of F. as expected.
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With use of a Lagrangian which allows for the variation of the shape and size of the
periodically repeating molecular-dynamics cell, it is shown that different pair potentials
lead to different crystal structures.

PACS numbers: 61.20.Ja, 05.70.Fh, 61.50.Cj, 64.70.Dv

Recent molecular-dynamics (MD) calcu)ations'
on homogeneous nucleation of a crystal out of a
supercooled liquid phase have shown that the
structure of the nucleated phase does depend on
the pair potential. These calculations are time
consuming because of the long-lived, glassy,
metastable states which the system has to inhabit
before nucleating. Here we present a very direct
and relatively short calculation which relates the
crystal structure to the pair potential in a simple
manner.

Andersen has shown how MD calculations can
be modified to study systems under constant pres-

sure by introducing the volume of the system as
an additional dynamical variable. In this paper
we show how a generalization of this idea leads to
a powerful method for the study of crystal struc-
tures and their relation to pair potentials. We
have performed MD calculations with a time-de-
pendent metric tensor which allows the volume
and the shape of the MD cell to vary with time.

Let the edges of the MD cell be a, 5, and c (in
a space-fixed coordinate system), and let them
be time dependent. Periodically repeating MD
cells will obviously fill up all space. Let h be
the matrix formed by fa, b, c); 0 = deth —= a ~ b x c
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h =~ '(n p, )o—. (3)

The matrix o has elements o,&-=M/6h;, ; the ma-
trix r is given in dyadic tensor notation by

QV=g m, v, v,

+g g X(r)~)(r) —r~)(r) —r~), (4)

the vector v, being hs, . Equations (2) and (3)
govern the dynamics of a system of N particles
in a periodically repeating MD cell which changes
with time in shape and volume. Equation (3) is
the expected relation between the variation of h,
the microscopic stress tensor g, and the exter-
nal pressure; n and p,~ act across the various
areas given by the components of b& c, c&a, and
ax b, which make up o. In Eq. (3) we clearly see
the possibility of a generalization to a nondiagon-
al external stress tensor.

In the special case of Andersen' h = diag(Q'",
. . . , Q"') and G 'G = 2~/SQ, but his equation for
b cannot be obtained from Eq. (3). However, as
in Andersen, ' it is easy to show that L of Eq. (1)
generates an isoenthalpic, isobaric ensemble,
apart from a small correction arising from the
term in 8'.

We have used Eqs. (2) and (3) to investigate the
Lennard- Jones 6-12 potential VzJ and a pair po-
tential' suitable for rubidium metal VRb. Units
of length, mass, and energy are chosen' in the

will then be the volume of the MD cell containing,
say N particles. The position of particle i will
be r, = g,a +q,.b+f, c =hs, , where s,. has compo-
nents (g„q„g,) each going from 0 to 1. Obvious-
ly z, '= s, 'Gs„where G =h'h, the transpose being
denoted by a prime. Using a dot to denote time
derivatives, we write the Lagrangian

~ ~

L= 2+m, s, 'Gs, -g g y(r„)

+ 2W Tr(h'h) —p,~Q. (1)

Obviously r, &' = (s, —s~)'G (s, —s&); p,~ denotes the
externally applied hydrostatic pressure; y(r) is
the pair potential; the kinetic term associated
with the time variation of h has a constant of
proportionality 8' which has the dimension of
mass.

With use of )((r) to denote dy/r-dr, the La-
grangian equations of motion are easily written
down:

~ ~

s) =m) 'Q y(r;, )(s, —s,) -G 'Gs„
(2)

standard fashion, so that all quantities carrying
an asterisk are the so-called reduced variables.

The MD calculation is started with a 500-parti-
cle system forming an fcc structure in a cubic
cell of length l* = 8.046 appropriate to the number
density p* =0.96. Thus at the start h =diag(l*,
. . . , l*). A small random displacement of each
particle from its lattice site provides the initial
conditions for the ensuing dynamics; the MD time
step was taken to be At* = 0.005. The structure
was monitored through the pair correlation func-
tion g (r).

The summary of one of several calculations ls
given in Fig. 1 and described in the following. In
this calculation we used %*=20.' At t =0 V» was
taken as the pair potential and p,~ was taken as
4.0.' Using well-known MD techniques, the tem-
perature of the system was set at a value T*
= 0.15 for a duration of 140 MD steps. Since the
starting structure was fcc the pair correlation
during this time showed clear and sharply defined
shells at distances relevant to an fcc structure,
namely 1, v 2, KS, K4, etc. [see Fig. 1, g(r) at t*
=0]. However, at step 400 (t*=2) it already be-
came evident that the MD cell was undergoing a
secular modification toward a rectangv3~ r paral-
lelepiped with two edges a, b of about the same
length and a shorter third edge c [see Fig. 1,
where (a+b)/2o is seen to be starting to increase
with time almost as soon as the calculation
starts]. The nondiagonal elements of h showed
small fluctuations around zero. The volume,
apart from small fluctuations, showed no secular
change. After 2000 MD steps (t*= 10) the struc-
ture of the system had changed from fcc to bcc
[in Fig. 1 see g(r) at t* = 14]. The bcc structure
so obtained showed no sign of any secular change
for another 1500 time steps. (It is to be noted
that a body-centered tetragonal lattice with edges
1, 1, and & 2 is an fcc structure and, inversely,
a tetragonal face-centered structure with edges
v'2, Z2, and 1 is a bcc structure. An hcp struc-
ture also can be generated out of a body-centered
tetragonal structure by appropriate changes of
lengths, angles and the position of the body cen-
ter. )

At this time, I;* = 17.5, the pair potential was
changed from VRb to VzJ and simultaneously Pext
was put to zero (which is the value appropriate
for this potential at p*-1.0). At the moment of
the change of potential the stable body-centered
structure occupied an MD cell with sides 9.00,
9.02, and 6.41, and angles within 1' of being right
angles. Immediately after the change, the cell
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~ ~ ~FIG. 1. The first graph on the left-hand side shows the MD cell edges (a, b, c) a.s a function of time t*. The ratio
(a+5)/2c has been plotted; it is unity at i*=0 When the potential is VRb and the MD cell is cubic; it tends to ~2 with
the passage o time. en Rb is c ange LJf t . 'Wh V 's changed to Vt at t*=17.5 further changes occur in (a, b, accompanied by a
change of the ang e e een a anh l b tw d b The cosine of this angle is shown as a function of time in the second graph from
the left. The various times at which the g(~) was monitored are indicated on the series of graphs on the right; each
g(x) is an average over mme s eps;140 t t the average temperature during these time steps is also shown. The final
state when quenched reveals, in the topmost figure, subsidiary peaks (wiggly arrows) due to stacking faults men-
tioned in the text. Note thatg is plotted as a function of x . The ratio of the squares of shell distances is 1:2:3:4:5:6,
etc. , in an fcc lattice and 1:4/3:8/3:11/3:4:16/3:19/3:20/3, etc. , in a bcc latt'ce.

and the structure started to deform. In about
1000 more time steps (i.e. , at t*= 25) a, new shape
of the MD cell and a new g(~) were established.
The cell parameters became 9.54, 9.23, and 5.59
with an angle of 98 between the first two, the
third being essentially perpendicular to them.
The system acquired a density p*= 1.03. In Fig.
1 is shown the g(r) at t*= 28. The first two peaks
in g(r) correspond to a close-packed structure.
When the final configuration was quenched to T*
= 0.01 with a short 100 step run, it revealed low-
intensity peaks in g(r) which would be absent in
a perfect fcc stacking [see last g(r) in Fig. lj.
A visual examination of the stacking along the
direction of close packing revealed the order
ABABCBACBA and hence the stacking faults. In
Fig. 1 the history of the run is depicted in a way
as to reveal the changes in the MD cell parame-
ters and in g(r) with the passage of time.

In recent years increasing attention has been
given to the problem of predicting the crystalline

phase of a system' with known particle interac-
tions. For most ionic materials, a fairly coher-
ent idea already exists concerning the lattice
structure on the one hand and ionic sizes and
charges on the other. ' However, for monatomic
systems and short-range, pairwise, central
forces, which lattice is favored by the system
at a certain density and temperature is in prac-
tice not an easy question to answer, except at
temperatures low enough to allow a harmonic
approximation to be valid.

We have shown here that the Lagrangian of Eq.
(1) is a powerful tool for studying phase transi-
tions in solids, especially in relation to the form
of particle interactions. Monte Carlo studies of
(N, p, T) ensembles generated by the two potential
terms in Eq. (1) with N+3 vectors a, b, c, and

s,, i= 1, . . . , N, will be very suitable' for the
study of such transitions as a function of T. In
our preliminary MD studies, we found that T*
= 0.05 was too low to trigger the changes depicted
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in Fig. 1 on the time scale of our calculation.
In addition to several calculations of the type

reported here, many calculations on 432 particles
were also made. In this case, starting with VzJ
and a bcc structure, one obtains a close-packed
structure with stacking faults. Repeated heating
and cooling of the faulty structure finally gives a
perfect fcc ordering. This implies that our dy-
namical equations do allow the system to monitor
in. configuration space the subtle local minima
which correspond to stacking faults in a close-
packed system

The exploratory calculations we have reported
here are an example of the way our dynamical
equations make it possible to relate particle inter-
action to particle arrangements in ordered struc-
tures. Many other applications seem possible.
Generalizing from uniform p,„, in Eq. (3) to a
general external stress tensor, the recent work
of Milstein and Farber' on the fcc-bcc transition
under (100) tensile loading can be investigated as
a function of temperature and of the characteris-
tics of the pair potential. We are at present in-
vestigating this problem.

Finally, the low-temperature phase transitions
in light alkali metals can also be investigated,
with the dependence of the pair potential on the
density. of the system taken into account. '
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Direct observations of the effect of quasiparticle mean free path on the hydrodynamics
of normal liquid. He are presented. Both the viscosity and the mean free path are found
to vary as & down to 1.5 mK. The relevance of these observations for other He ex-
periments is mentioned.
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In recent years considerable interest has been
focused on the properties of liquid 'He at very
low temperatures. ' Measurements are often in-
terpreted using hydrodynamic theory which im-
plicitly assumes that a continuum picture suitably
describes the system. In'He, however, the
quasiparticle mean free path, A. , grows as T 2.

Below about 10 mK, A. can become nonnegligible
compared to relevant experimental dimensions.
Therefore, continuum hydrodynamics may lead
to erroneous interpretation of low-temperature

'He measurements. In this paper we show how
the nonzero mean free path causes departures
from ordinary Poiseuille flow. Analysis of Qow
data allows us to determine both the viscosity and
the first-order mean free path correction to the
flow resistance. Without this correction one
would deduce that the viscosity, g, does not scale
as T ' in apparent contrast to the Landau Fermi-
liquid theory. '

In the usual treatment of Poiseuille Qow through
a channel one has V =&P/Zrt, where &P is the

1980 The American Physical Society 1199


