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A relationship between the Lyapunov numbers of a map with a strange attractor and the
dimension of the strange attractor has recently been conjectured. Here, the conjecture
is numerically tested with use of several different maps, one of which results from a sys-
tem of ordinary differential equations occurring in plasma physics. For the cases tested,
the conjecture is verified to within the obtained accuracy.
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An attractox is a subspace of some ordinary N-
dimensional space to which the solution of an N-
dimensional dynamical system of equations as-
ymptotes for large time. Two cases of dynamical
systems will be considered here: maps (discrete
time variable j),

x,„=f(x,), (1)

where j is an integer, and autonomous ordinary
differential equations (continuous time),

dX(t)/dt =T(X),

where F, f, X, and x areN-dimensional vectors.
Equation (1) generates a sequence x~, x„.. . if an
initial x, is given, while Eq. (2) generates an or-
bit X(t), if R(0) is given. A strange attractor
may, for most purposes, be thought of as an at-
tractor with dimension d &N, where d is nonin-
teger. The relevant definition of dimension is
that due to Hausdorff'

d= lim[lnn(e)J[ln(e ~)] ~,

where n(e) is the number of N-dimensional cubes
of side c needed to cover the attracting subset.
Alternatively, n(e) =Re "for small e, where K
is a constant.

Strange attractors have received special atten-
tion in recent years because of the possibility
that they occur in a wide variety of physical situ-
ations. An interesting attribute of strange at-
tractors in that they lead to chaotic or turbulent
orbits. For example, the onset of turbulence in
fluids in currently thought to coincide with the ap-
pearance of a strange attractor. 2

A possible reason for interest in the Hausdorf
dimension of a strange attractor is that it says
something about the amount of information neces-

sary to specify the attracting set to within an ac-
curacy e. More concretely, if one wanted to give
a coarse-grained distribution function f, (X) for
the approximate calculation of a time average
over the turbulent evolution of a given function g
of R(t), then one would write

(g(x)) =—fj,(x)g(x) d"x,

where (g(X)) is the time average of g(X(t)), e is
the coarse-graining scale, and (4) results from
the ergodic hypothesis if g(X) is assumed to be
slowly varying in the scale e. One way of con-
structing f, is to divide the original N-dimension-
al space into cubes of side c and then specify the
fraction of time that the orbit on the strange at-
tractor spends in each cube. Only n(e) cubes will
have nonzero values of f,. Thus, the information
necessary to specify f, is the coordinates of the

n(e) cubes in which f, 0 0 and the value of f, in
'each of these cubes. Hence, in principle, the in-
formation necessary to specify f, is contained in
n(e)(N+1) numbers. Thus, the dimension says
something about the amount of information neces-
sary to characterize the attractor.

Recently, a relationship between the dimension
of a strange attractor of an N-dimensional map
[Eq. (1)] and the LyaPunov numbers of the map
has been conjectured. ' Let ~„X„.. . ,X„be the
Lyapunov numbers of the map ordered so that A. ,
0 A 2 0 A 3 ) ~ ~ ~ & X„. Then Kaplan and Yorke' con-
jecture that (the result of Mori and Fujisska' is
different for N & 2)

d =j+ [in(X,X,~ ~ Z,)]fm„,-']-',

where j is the largest number for which A. ,A., ~
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) 1. The I yapunov numbers A. ,- are defined to be

X, =lim(magnitude of the eigenvalues of J(x,) ~ ~ ~ J(x,)J(x,)j'~', (6)

where x» x„.. . , x, is an orbit generated by (1),
and J(x) is the Zacobian matrix of (1), J;;(x)
=af;(x)/sx, For the special case N =2 with A.,
& 1&X,X„Eq. (5) becomes

d =1+ (~,)/(iru. ').
As a way to intuitively motivate Eq. (7), we

have constructed a simple special map for which
(7) is satisfied exactly,

&n+ j.—~2&n+ Xn -~g

y„„=z,y„(mod 1), (8)

1

X

FIG. l. Illustration of the map Eq. (8) for &, = 3.

wher Xx) 1)&~~2)0 is assumed and we take ~, to
be an integer. This map may be viewed as result-
ing from two operations, illustrated in Fig. 1 for
A. ~= 3, which map the unit square, 0&x&1, 0
&y &1, into itself. Application of (8) M times
will map the unit square into A. ,"vertical bands
each of width along x of X,". Furthermore, it
can be shown that these A. ~ bands are contained
within the A. ,™I) bands that result from 1Vl —1 ap-
plications of (8) to the unit square. Clearly the
dimension of the attractor along y is 1. The di-
mension along x can be obtained from Eq. (3) by
noting that, the necessary number of coverings of
length e =A.,~ is X~~ (p is an integer). Equation (7)
then follows.

In order to apply Eq. (5) to the case of ordinary
differential equations, Eq. (2), we introduce the
Lyapunov exponents, h»h„. . . ,h„, where' de-
notes the dimension of the system (2). Viewing
the ordinary differential equations as generating
a map advancing X forward by some fixed arbi-
trary increment in time, 7, we can identify A. ;
=exp(h, .v), and insert the X, in (5)~ The result is
independent of ~. For example, for N =3, we

have (see also Mori' )

d = 2 —h~/hs,

where we have assumed h, )0)k3 and h~+A3+0
and made use of the fact that~ k2 =0.

In what follows, we will first describe some
numerical experiments designed to test Eq. (7).
The technique will then be applied to a test of
Eq. (9) with use of a system of ordinary differen-
tial equations. '

The Hausdorf dimension for a strange attractor
of a two-dimensional map is calculated using a
computer program based on Eq. (3). To calculate
n(e) the space is divided into boxes of side e. An
initial vector is chosen, and the map is iterated
a sufficient number of times (i.e., much greater
than inc/ink. ,) that the subsequently generated
points can be considered to be on the attractor.
A list is made of those boxes containing at least
one point on the attractor. Each newly generated
point on the attractor is checked to see if its box
is on the list. If not, it is added to the list. After
many iterations, the number of boxes on the list
approaches n(e). For small e, we expect that
n(e) Xe '.-Thus, defining d, -=(In[g (e)]j(inc ') ',
we see that d, —d -=(1nK)/(Inc ~). It is difficult to
make d, —d small by making c small since the de-
pendence is logarithmic. Note, however, that for
small e a plot of d, vs [inc ~] ~ will be approxi-
mately linear. This is, in fact, observed numer-
ically. Our "measured" values of d are deter-
mined by least-sqv~~es fitting a straight line to
d, vs [inc '] ' for several small values of c, and
then extrapolating the result to e-0. The accura-
cy of the result is estimated from the standard
deviation of the points from the fitted line. The
above-described dimension measuring program
has been tested, with good results by use of sev-
eral sets of known dimension [an area, a line, a
Cantor set, and Eqs. (8), among others].

Tests of Eq. (7) with use of three different two-
dimensional maps were performed. The three
maps are one originally studied by Henon' (z,,
=y, +1—ax, ', y;, ~=bx, ), one introduced by Kap-
lan and Yorke' [x,+~ =2x,. (mod 1), y,.+~

= my,
+cos4mx, ], and one studied by Zaslavskii' as a
model of the effect of dissipation on a Hamiltoni-
an system (x,+~ =[x,. + v(1+ py,.) + e vp, cos2wx, ]
(mod 1), y, ,~=exp(-I')(y, +e cos2mx, ), where p.
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TABLE I. Summary of test data.

System tested
d from Lyapunov

numbers
d from program
based on Eq. (3)

Henon map,
a=1.2, b=0.3

Henon map,
a = 1.4, b = 0.3

Kaplan and Yorke
map, n = 0.2

Zaslavskii map,
I' =3.0, a=0.3,
v —10 && 4/3

Ordinary differential
equations of Ref. 5

1.200+ 0.001

1.264 + 0.002

1.430 676 6

1.387+ 0.001

2.317+ 0.001

1.202+ 0.003

1.261+ 0.003

1.4316+ 0.0016

1.380+ 0.007

2.318+ 0.002

-=[i —exp(-l )]I' ~). For all of these maps
det J(x) is a constant independent of x [-k for the
Henon map, 2e for the Kaplan- Yorke map, and
exp(-I') for the Zaslavskii map]. Thus, all of
these maps lead to uniform contraction of areas
on each iteration, and X,A., =

~
det J(x) ~

~ Further-
more, for the map of Kaplan and Yorke the Lyap-
unov numbers may be calculated analytically, A. ,
=2 and A., = e. To find the Lyapunov numbers for
the Henon and Zaslavskii maps we utilize Eg. (6)
to calculate the largest eigenvalue, A. ~, and then
find X, from a,a, =

~
det J(x)~. [A., is usually inac-

curately determined from (6) unless a very large
number of decimal places is retained in the cal-
culation. ]

The first four rows of Table I summarize re-
sults from tests with use of the above-mentioned
two-dimensional maps. The second column is the
value of d predicted from Eq. (7). The third col-
umn gives the value of d calculated using our di-
mension measuring program. The fifth rom of
the table gives results of a similar test of Eq. (9)
with use of a system of three ordinary differen-
tial equations that describes the saturation of a
linearly unstable plasma wave via cubicly non-
linear coupling to linearly damped waves. ' ' For
the system studied, the divergence of F(R) [cf.
Eg. (2)] is a negative constant independent of R,
&Ez/BX&+ &F2/&X + & F /&X3 = -k. Thus, by the
divergence theorem, phase-space volumes
evolved according to the given system of equa-
tions will shrink exponentially in time, and hg+ k3
=-k. Thus, Eq. (9) yields d =2+k, (k, +k) '. k,
can be determined by numerically computing the
average exponential divergerice of two infinitesi-
maQy close-by points. Thus, we obtain a predic-

tion of d. To compute d based on Eq. (3), we as-
sociate a Poincare map with the differential equa-
tion system. ' This gives a picture of the inter-
section of the strange attractor with a surface
(the "surface of section"). The dimension-mea-
suring program is applied to this intersection.
The dimension of the strange attractor is then
the dimension of the intersection plus one. The
last row of Table I compares results from this
procedure with d =2+ k, (k, +k) '.

It is evident from Table I that the predicted and
measured values of d agree to within the accura-
cy obtained for all cases considered. We note
that calculation of the dimension from the Lyapu-
nov numbers is computationally much less costly
than using a routine based upon Eg. (2). As an
example, for the second row of Table I, the cal-
culation of the measured value of d required
about 5 min on the Cray computer and about 4
&& 10' words of memory. The calculation of A.„
however, required about 0.3 min, and a relative-
ly insignificant amount of memory.

Based on further development of the theory, '
it is now clear that (7) and (9) cannot be true in
general. In particular, they should not be expect-
ed to hold for cases where the eigenvalues of the
Jacobian depend on x (i.e. , all the maps we have
tested except for that of Kaplan and Yorke). The
results in Table I, however, indicate that, even
if (7) and (9) do not hold exactly, they must still
yield a surprisingly good approximation to the
dimension for typical cases where the contraction
rate is constant. The reason for this close agree-
ment is currently under investigation.
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