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The diagrammatic approach to scale breaking, which allows for the fact that the target
quark in a hadron is necessarily offshell, is employed to demonstrate that Nachtmann
moments do not generally absorb all M[.,ad,(mz/(.?2 corrections.

PACS numbers:

Experimental testing of asymptotically free
quantum chromodynamics (QCD) requires a mo-
mentum transfer @* large enough to make an ex-
pansion in powers of a  (Q?) valid. Moreover, @?
must be large compared to all relevant masses.
At the energies at which most tests have been car-
ried out, however, the ratio M2/@*, where M is
the mass of the target, is not negligible. Such
target-mass corrections greatly complicate the
interpretation of deep-inelastic-scattering data
at moderate energies.

Georgi and Politzer® inferred from the operator
product expansion that the use of a new scaling
variable ¢ instead of the Bjorken x would, to a
good approximation, absorb all target-mass cor-
rections. In standard notation where the lepton
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momentum transfer is ¢, the target momentum
isp, @*=—-¢?, and p>=M?, the variable £ is de-
fined by

2x
3 =1 +(1+ M2/ Q?)1 72 (1)

where x =Q?/2p+q. Interms of moments of struc-
ture functions, the claim is that the use of Nacht-
mann moments® incorporates target-mass correc-
tions. For example, in deep inelastic neutrino
scattering the Nachtmann moment of the F, struc-
ture function is

M= [ax AAF (L + o+ 1) +4M%2/Q7) 7).

(2)
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There has been extensive discussion and some
controversy in the literature as to the validity of
the claim that the Nachtmann moments incorpo-
rate all target-mass corrections.®* The diagram-
matic method for the analysis of QCD* now pro-
vides a systematic approach in which this ques-
tion can be answered, without making the approxi-
mation, used in some previous approaches, that
the target quark is on-shell. This paper gives a
brief summary of our results,” which are nega-
tive: we find target-mass corrections of the
form M?/@* which are not incorporated by the use
of Nachtmann moments.

The advantages and limitations of Nachtmann
moments can already be seen from analysis of the
simple class of diagrams shown in Fig. 1, where
the deep inelastic probe strikes a quark, and
where K represents the two-particle irreducible
amplituge for finding this quark inside the target.
Let us first illustrate the simplest features of the
problem by considering a model in which all the
particles, including the deep inelastic probe, are
scalar. We write a spectral representation for K:

K(k,p) = dop(o,k*,p3)/1(p =)* - o]. 3)
The deep inelastic amplitude of Fig. 1 is then
_ d*kdap (0, k%, p%)
T(p,q) '[(Zn)'*k“(k—q)z[(p—k)z—o]' (4)

We will calculate T in the Euclidean domain,
which is algebraically equivalent to taking p2 and |

FIG. 1. General “handbag” diagram for deep inelastic
scattering on a hadron target.

g*>0 and changing the sign of o, and expand
7(,0)= Zm,0%,0)(2 | €.+, (5)
n=0

where the C,=C,"' are Gegenbauer polynomials.,
If the M, so defined are continued to the physical
region one finds that they are the Nachtmann mo-
ments appropriate to the spinless problem,

M, (0%, = [ @x /x)E™ (1/1) ImT (p,q).  (6)

One can perform the angular integration in (4)
by expanding the denominators®

where
2,0 = p?+ k2 +0 = [(p? ;:’: +0)% = 4p%p2] 112 @
Using standard properties of the C, one finds
5\ " A\ L,
,k> Iil+<k—2> ok —q)J. 9)

If the function p is highly convergent the second term in the bracket is suppressed and (continuing to p?

2 a1 © dk® 2 .ok
Mn(p ;q )_qZ(n_*_l)_/(; 16W2k4/dcp(o’k ’p )(pZ
== M%,q* =)
M,= (1/@)A,0?).

(10)

In contrast an ordinary x moment, in this same model, would have a series of M?/@Q? corrections.”

In general, we can write a Nachtmann moment as

M, =f"(°) (QZ)A”(O)(Mz) +f"(1)(Q2)(M2/Q2)An(1)W2) P

The question we are examining is whether the
A,,(‘) are negligible for > 1. One might hope, for
example, that they are of order « (@?) or at least
a (M?), relative to A,” (M3). Or, one might ar-
gue, following De Rujula et al.,? that the correc-
tion terms would be characterized by a scale A2/
@? where X is characteristic of the inverse had-
ron size rather than its mass. Infact we have
shown that these are the only possibilities in the
scalar model with strongly convergent p.

Exactly how many of the A,%=? vanish depends

(11)

on the explicit form of p. For fixed o, and p of
the power-law form ’

p®?) =[x/ +1)]?, (12)

we find A,,(1)=A,,(2) =0 and that explicit M2/@? cor-
rections begin with A,¢® #0. The Nachtmann mo-
ments continue to absorb the leading M2/Q? cor-
rections. We shall show that this simplicity of
the scalar model does not persist in models with
more realistic spin assignments; explicit M?/@?
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corrections appear at all orders.

Perhaps the cleanest case is that of a virtual
photon target,® where the lowest-order diagrams
are shown in Fig., 2, We compute the Feynman
integrals as before, and look for leading lng®
terms. Here we give the result only for the sim-
plest Nachtmann moment of the O(4)-spin-zero
amplitude

To=8u,T" *®gqs (13)

q.,LL‘}'v ,\?)qﬂ/ Q7/-L q,v

P,B

p,a

pag”  Yp,8

FIG. 2. Diagrams for deep inelastic scattering on a
photon target. Both are required for gauge invariance.

This amplitude has a Gegenbauer expansion and Nachtmann moments just the same as the scalar case

given by (5) and (86).

We find
1 [ 2 2 1 pz( 6 2 2
n__ = _ 2 _ p” _
Mo = 8n2 Ing n+2 n+l nt@E \n+2 n4d n+l
p_) 2 2 4
( 2 <n+2k—2 w2k +2 —n+2k>]' (14)

Explicit p/¢® corrections are present, and Nacht-
mann moments do not have simple scaling proper-
ties for this photon-target case. Similar results
are obtained for other terms in the QCD ladder
series. Moreover, the higher-order terms in the
series cannot cancel the p%/¢? corrections in (14)
because each term contains a different number of
intermediate-state particles, and these contribute
additively to the imaginary part.

Thus for the photon target, the additional struc-
ture introduced by spin and by the inevitable pres-
ence of the crossed graph [from which all the (p%/
q®)* k>2, terms arise] results in target-mass
corrections which are not incorporated simply by
using Nachtmann moments or £ scaling. One
might still hope, however, that the trouble lies
in the anomalous character of the photon target
—the pointlike part of the photon contains quarks
with very high transverse momentum. However,
even for a hadronic target, the spin structure and
the presence of nonleading graphs (related to |

. ¥

gauge invariance) turn out to be essential compli-
cations; the damping provided by the hadron wave
function will not generally suppress the target-
mass dependence by replacing it with A/Q? where
A is a parameter characterizing the average val-
ue of k% of the quark in the hadron. In particular,
we have examined this question using two differ-
ent models of hadrons, and find that target-mass
corrections persist if the hadronic wave function
falls off like a power at high k%, as in QCD.®°

We shall illustrate here only the simplest mod-
el we have considered, in which we calculate the
amplitude F; for neutrino scattering on a massive,
charged, spin-one-half bound state (a “proton”)
with one, charged, spin-one-half constituent of
zero mass and one, uncharged, spin-zero, con-
stituent of mass o, shown in Fig. 3. At each pro-
ton vertex we supply a factor [p(?)]*/2 to repre-

" sent the suppression of high 2% by the proton wave

function. The result of a calculation similar to
the ones already described is™

1 dk n+2 k:n+2 p? n+2<k >
n__—_ 2 -z e
My =3or (k)< ){ n T @n+l R n+l\p
(o) [1oa (2]
+q2n+ pZ"" 1+n+2 pZ"" . (15)
Again, one sees explicit p?/¢® terms, which origi- concentrate on that limit, where we find
nate from the spin structure. In general, the 2
. . . no~_1 M 1 M? o
phenomenological importance of these terms is M," e 397\ 4+ 2 po 55— 3n Q—z . (16)

difficult to evaluate, since they depend on o and

on the form of p(k?). We can, however, examine
them for the form of p given in Eq. (12) which at
least has the high-%2 behavior of QCD. Since the
large-k? region controls the large-n behavior we
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If M? and 0 are comparable (as expected for sta-
bility of the “proton”) then the terms of the form
nM?/Q? and no/@* can be very important pheno-

menologically.'" Abbott and Barnett!'? have shown



VOLUME 45, NUMBER 14

PHYSICAL REVIEW LETTERS

6 OCTOBER 1980

FIG. 3. Deep inelastic scattering on a spin-3 “proton”
composed of a charged spin-3 massless “quark” and a
charged spin-zero constituent of mass o.

that such terms, with an appropriate coefficient,
can account for much if not all of the observed
nonscaling behavior usually attributed to QCD
anomalous dimensions. We find the numerical
coefficients of these terms to be model dependent.
(In particular, nonleading graphs, related to
gauge invariance, typically change the sign of the
nM?/Q® and no/Q? terms.) Nevertheless, it is
interesting that they arise in such simple dia-
grams as Fig. 3.

To summarize, we have found—rigorously for
a photon target and in models for a hadron target
—that explicit target-mass corrections of the
form M?/@? arising from spin structure and non-
leading diagrams are nof taken into account sim-
ply by use of Nachtmann moments or { scaling,
It may still turn out that Nachtmann moments or
¢ scaling provide improved fits to the data, but
this is an experimental and phenomenological
question. .

We conclude with a comment on a limit in which
consideration of target-mass corrections simpli-
fies; namely, the limit

P3¢ ==, r=q¢*/p*>1, fixed. (17)

In this limit the QCD log development collapses.
For instance if we compare the zero-gluon and
one-gluon terms of the standard axial-gauge lad-
der series we have (omitting wave-function re-
normalization factors inessential to argument)
in the limit (17)

a? d1nk?
0-gluon +1-gluon=1+ y"£2 iz

lny»
Ing?

~1+y, (18)
and we see that the one-gluon contribution is sup-
pressed by a factor o, (Q?. Thus the one-loop
diagrams we have been calculating dominate in
this limit, In fact, it is only in this limit that the
p?/q* corrections can be more important than the

higher-order o effects,
p%/q%*>1/1nq?. (19)

In the usual fixed p?, ¢* — = limit, the sense of the
inequality is reversed and higher-order o, effects
should be more important than target-mass cor-
rections.

It is even possible that the low-g? region of
deep inelastic data on a nucleon target is closer
to a fixed ¢®/p? regime than to the regime in
which the leading log series of QCD, appropriate
to the asymptotic ¢® -« limit, has a chance to
develop. In that case, simple one-loop diagrams
such as we have been calculating should describe
the data, with the scaling violation resulting en-
tirely from M?/Q? corrections !
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Condensation of the operator (G,,* )? in quantum chromodynamics is shown by con-
structing the effective potential through the trace anomaly equation. Effects of Wilson

loop on the condensation are also studied.
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Certainly one of the most important problems
in low-energy quantum chromodynamics (QCD) is
the determination of its correct ground state.
Various pictures have been offered' as to how it
might be formed, but at the moment we do not yet
have secure knowledge of its structure and the
primary mechanism(s) responsible for it. In this
note we study the structure of the vacuum in QCD
with massless quarks by constructing the effec-
tive potential for the gauge-invariant gluonic op-
erator ¢=3/d*x[G ,,"(x)]?, where (;‘“,,“ =9 “/i,,“
-08,A,0+gf ™A PA,°.? [We use a caret to de-
note operators and the internal symmetry group
is taken to be SU(W). |

Our central machinery is the trace anomaly
equation for the energy-momentum tensor </3”,, of
the theory with a constant source J coupled to ¢.
From it, through a Legendre transform, a non-
linear differential equation for the effective po-
tential ¥(¢) is derived [see Eq. (10)], and is
solved for small coupling. The solution leads us
to conclude that there exists a unique stable vac-
uum in which @ condenses with positive sign, rel-
ative to the perturbative value, which agrees with|

that deduced from experiments.® It should be em-
phasized that our discussion does not rely on any

assumption of the dominance of certain field con-
figurations nor on the large-N limit.

We then introduce the Wilson loop ¥(c) into the
condensed vacuum and derive an exact renormal-
ized equation [see (11)], which states that the
area dependence of ¥(c) is determined by how the
condensation (@) changes due to the presence of
the loop. The salient feature is that the conden-
sation is broken near the loop.

An elegant derivation of the trace anomaly in
QCD* has been given by Collins, Duncan, and
Joglekar.® A new situation arises, however,
when one introduces the source J for a “hard”
operator ¢ and wishes to study the J dependence;
one needs to renormalize the theory in such a
way that multiple insertions of ¢ become finite.
This must be fully discussed before we can util-
ize the method of Ref. 5. Below we shall present
the discussion without quarks and later indicate
a change to be made when we include them.

Our starting point is the generating functional
Z, in an axial gauge, given by

Z=exp(iW)= JDA,8[ 1,4, 0] exp (i Jatx{= 1 (1+ T)I6,#*(x) 12+ M)A o(0)]) , )
where “0” indicates dimensionally regularized bare quantities and d is the dimensionality of space-
time. For the purpose of renormalization it is convenient to go to an alternative representation of Z.
By making a scale transformation g,2=g.2/(1+J,), A j,*=(1+J,/24,%, and j, *=(1+J,)" /% ¥ Z takes
the form (in dimensional regularization the Jacobian is unity),

Z=exp(iW)= DA ,0ln,4 ") exp (5. d%s{= £1C 1o ()12 + 7 1 Hx)A ,0(0)}) (2)

1142

© 1980 The American Physical Society



