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A particular exa'mple of impurity diffusion in a solid is calculated and it is noted that the
usual assumptions for Brownian-motion theory are invalid in this case.

PACS numbers: 66.30.Dn, 05.40.+3

Of the multitude of processes in physics and
chemistry that involve activated escape of a "par-
ticle" over a barrier (chemical reactions, dy-
namics of certain spin-glass models, diffusion,
superionic conductors, etc. ) only those are ade-
quately understood that involve a clear separation
of time scales of "particle" and "heat-bath" mo-
tion. The effect of the heat bath is then repre-
sented by a friction coefficient. According to
Kramers, ' when this friction coeff icient lies in a
certain range, the so-called absolute-rate theory
(ART) applies, and in this range, the escape rate
is practically independent of the value of the fric-
tion, i.e., independent of the dynamics of the
par ticle-bath interaction. Purely statistical ar-
guments then give the escape rate. The term
"particle, " in general, refers to the representa-
tive point in the multidimensional configuration
space of a many-particle system. Vinyard's'
theory of impurity diffusion in a crystalline solid
is an example of ART (at each step of the diffu-
sion process the crystal configuration is assumed
entirely relaxed). The rate is then the forward
current per particle over the saddle point of the
energy hypersurface. However, the rate of mo-
tion of the host and impurity atoms are not sig-

nificantly different; thus the preconditions for
Kramers' theory in general and ART in particu-
lar are not met, at least not insofar as the host
acts as heat bath. Nor will th.ey be met in the
important case of a chemical reaction on the sur-
face of an insulator. It is to be emphasized that
there are at present no reliable theories in the
absence of the particular separation of time
scales mentioned above. However, in one parti-
cular case, namely that of an impurity bound in a
lattice in such a way so as to give rise to a well-
defined local mode, it is possible to calculate an
approximate diffusion rate of the impurity with-
out Langevin- Fokker- Planck assumptions.

Escape over the barrier here corresponds to
mode instability and the escape rate is the aver-
age number of times per second that instability
conditions are met. The anharmonicity causes
instability in three ways: (i) Impinging phonons
occasionally excite the mode to an amplitude it
cannot stably sustain. (ii) The incident phonons
modulate the effective local mode frequency, oc-
casionally turning it imaginary. (iii) Parametric
excitation by incident phonons.

Processes (ii) and (iii) combined dominate the
rate. They are related to an effect proposed by
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V is the volume and +,(q) = cI q I is the unper-
turbed phonon frequency for wave vector q, and

n is an arbitrary unit vector. The continuum fre-
quencies ~„and the local mode frequency ~, are
determined from the eigenvalue condition

Cf

3V - &u,'(q) -cup' (3)

This equation gives rise to M&N distinct
modes. N/3 is the total number of particles. The
remaining N -M modes have vanishing gradient
at the origin and are, therefore, unaffected by
the impurity. ' Hereafter we neglect all such so-
lutions. The set ((pp (x )j is therefore not a com-
plete set. The wave functions (pp(x) are, however,
orthogonal,

fd'x pp(x)qp, '(x) =Mpbp p. (4)

Kornblit, Pelleg, and Rabinovitch. ' Occasionally
a local fluctuation pulls some nearest neighbors
of the impurity far enough apart to permit it to
move through.

We treat the host crystal within the harmonic
approximation, but allow the impurity to interact
with its nearest neighbors with a harmonic force
large enough to yield a local mode, plus a repul-
sive anharmonic part dominant at large displace-
ment (in the absence of a well-defined local mode,
the problem is more difficult). For conciseness,
we take the mass of the impurity atom equal to
that of host atoms. An advantage of this model
is that it permits actual evaluation of Vinyard's
formula for comparison.

In the continuum approximation the Lagrangian
density of this model is

Z(x) = —,
' (s('p/at)' ——,'c'(v(p)'

——,'eb(x )(v(p)'+ —,'bb(x )(v(p)',

where c is the speed of sound and (p(x ) is the field
of the atomic displacements from their equilibri-
um positions. For simplicity p is taken to be a
sealer, c is the excess force constant, and b(x)
is the Dirac 6 function. The quartic term simu-
lates the actually prevailing anharmonicity suffi-
ciently well to permit discussion of the rate.
Whenever appropriate we have used the Debye
model for the phonon spectrum.

The normal modes for the bilinear part of the
Lagrangian (b =0) are

with

which, with the help of the eigenvalue condition,
can also be written as

Mp '=~ d~p'/de.

The nontrivial solutions of the full Langranian
can be expanded ase

(p(x, t) =gpXp(t)pp(x), P = 1, . . . . , M;

the expa, nsion coefficients Xp(t) satisfy the equa-
tion

M, ', +Mp(()p'Xp(t)- —, )~Xp (t) '=0,

where p, t)' = 1,. . . ,M refer to any mode (local or
otherwise).

The familiar methods by which the nonlinear
terms lead to damped quasilinear modes are not
of interest here. We postulate that the rate to be
found is the mean reciprocal time interval needed
by the local mode to change from small amplitude
behavior over to an unstable exponential growth.
This crossover is due to coupling to the continuum
modes, whose motion is only affected negligibly
by that of the local mode.

The equation of motion for the local mode is

d'x, /«'+ I.
' —» f (t)jx

—»,f.(t)x,'- b, x '=b f.(t ),
where

b, =b/e M, ,

y, (t)= ) y, (t)) "', 0 =0, 1, L (10)
iwg

The root-mean-square frequency spectra (in
three dimensions) of fp(t) are shown in Fig. 1.
The interesting feature is that there is concentra-
tion of the weight under nonoverlapping well-de-
fined peaks, implying that they can be regarded
as sums of slowly (superscript s) and rapidly
(superscript r) varying functions of time, f„(t)=fp'
+ f," with negligible overlap between f; and f,".
As the dimensionality increases the peaks of these
functions shift towards their limiting values (Fig.
1), and their spectra narrow.

The physical effects of the various time-depen-
dent terms for the local mode, taken separately,
are as follows:

(a,) The slowly varying part of f, (t) (see Fig. 1)
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FIG. 1. f 0 has the usual Debye spectrum (not shown).
The spectral density of f t and f 2 are in arbitrary unre-
lated units. The labeled points are the limiting peak
positions for infinite dimensionality.

where k, =e'/4b, ~ =no/c2, &u,. =~o,./to&„y,
=din~ '/dine, P; =dto /cK,

I" = Q p, p, (1/to, —1/to, .)', z, =y, [~ -y, (a+1)],

modulates the curvature of the harmonic well,
occasionally turning it into a nonbounding poten-
tial.

(b) The fast part of f,(t) can be written as
[ exp(i &d,')g (t) + c.c.], where g(t) is a relatively
slowly varying function of t, and ~o, (= 1.680&D}
is the peak frequency of the spectrum of f,". g(t),
treated adiabatically, will occasionally destabi-
lize lt, (t) according to Mathieu's equation.

(c) f,(t) may be written [exp(i&oDt)h(t) +c c J, . .
with h(t) relatively slowly varying; occasionally
k(t) is big enough to destroy the barrier.

(d) The slow part of f, (t) can be studied by stan-
dard nonlinear-oscillator theory, combined with
an adiabatic assumption for f,(t). Again X, occa-
sionally becomes unstable.

(e) The fast part of f, treated similarly does not
yield an instability for ~, ( 2.4toD (for large &u,

see below).
We calculate the mean rates of occurrence of

these processes, '

where t; are the critical times, by converting the
time average to an ensemble average. We ne-
glect correlation between all these processes ex-
cept (a) and (b). This is obviously justified if any
one of these rates is reasonably faster than the
others.

n = N/V is the total mode density, and to, =1.680
and ~„=0.8571 are the peak spectral frequencies
of the functions f," and f," (Fig. 1), respectively.
For reference, we also show process (a) alone.
It is interesting to compare our results to that
of Vinyard's (ART), which for our model is given
by

v„=&u (rt /2)~ /2' h =It (1+ eg /e

where g' is the unique real solution of

N
p 1

, id, '+ rl' 3(e+1) ' (16)

To show differences in our various rates as
well as the difference from that of Vinyard's, we
have plotted It, /k„h„, /It„h„/It„and tt„/Ito in
Fig. 2. Thus our highest rate [processes (b) and

(a) combinedJ is lower than ART. The amount
that ART differ s from our rate grows as ~ be-
comes large; in this regime our picture of diffu-
sion is most reliable. Figure 2 clearly. shows
that ART overestimates the rate by a very large
factor.

To bring the results to an even sharper focus
we finally consider the extreme case ~, » ~D
when the entire harmonic potential (not just its
slow part) occasionally becomes nonbonding, and
we obtain
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large and the barrier correspondingly high. Pre-
sumably this difficulty would be avoided with a
more realsitic "periodic" local interaction for
the impurity because of the possibility of the sys-
tem snapping into a contiguous equilibrium con-
figuration. A more detailed version of this work
will be published elsewhere.
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FIG. 2. The barrier of ART is finite at & =0. All the
other barriers grow faster than & resulting in diver-
gent barrier heights.

for large e, we have the analytic forms

v„=-0.1637(uD, h „=-0.2593clzo,

v„=—0.3162m i~ uo„h„=—ko.

(18)

(l9)

We conclude with a few comments. Our results
are only valid for e&2 (~, &l.l~D); in fact, our
barriers diverge as ~-0. This unphysical result
is the consequence of the local mode becoming
less localized which involves very many of the
host atoms. The total strain energy associated
with the local mode becomes correspondingly
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