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Evidence of an Approximate Symmetry for Hydrogen in a Uniform Magnetic Field
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From a numerical analysis of the energy-level structure for hydrogen in a uniform mag-
netic field, evidence is found for an approximate dynamical symmetry which is effectively
exact for many highly excited states. Identification of this approximate symmetry is ex-
pected to lead to new physical insights and to new calculational methods.

PACS numbers: 32.60.+ i, 31.10.+z

Studies of the energy-level structure for an
electron moving in a Coulombic electric field and
a uniform magnetic field of arbitrary strength
have been motivated by problems in astrophysics,
solid state physics, and atomic physics. ' For
low-lying states various approximation methods,
often variational, have been adopted with some
success. ' For higher states standard methods
have not been successful and we lack even quali-
tative understanding of the energy-level structure
except in certain limiting cases. The fundamen-
tal difficulty is that the Hamiltonian is nonsepa-
rable and there is no natural expansion parame-
ter which is valid at both high and low fields. %e
believe, however, that a heretofore unrecognized
"approximate symmetry" exists which may al-
low accurate approximate solutions at all field
strength. Whether or not such an approximate
symmetry exists is of intrinsic value and the re-
sulting. solutions would be of great practical in-
terest to the interpretation of experiments on

highly excited atoms. "These experiments are
now capable of probing the whole range of phe-
nomena with fully resolved levels to the high-field
limit.

The existence of an approximate symmetry per-
mits the Hamiltonian to be written as H=II, +II„»
where H, is separable and reflects the symmetry
and H„, is nonseparable. H„, is much less than

Il, for excited states and can be treated perturba-
tively. In fact, we believe that its effect on large
classes of highly excited states will be negligible
in the sense that the perturbations will be small
compared to the natural radiative decay widths.
This approach has not been investigated previous-
ly because H„, is comparable to H, for low-lying
states, and because the symmetry underlying the
separability of H, is not of a simple geometrical
form.

Our conjecture is motivated by earlier studies
of atoms in electric fields'; it will be helpful to
review some of the salient features of that work

in order to set the stage for the magnetic field
problem. The nonrelativistic electric field Ham-
iltonian is Hs = —,p' -1/r+ I'z (atomic units), which
is separable in parabolic coordinates. Exact so-
lutions are possible in the sense that the energy
can be expressed as an asymptotic power series.
in the field, and the coefficients can be evaluated
exactly for every order. ' The separation con-
stants for the Stark problem are generally de-
noted by Z, and Z„where Z, + Z, = Z (Z is the nu-
clear charge). The constants of motion are the
energy, the azimuthal quantum number, m, and

Z, . Degeneracies (level crossings at nonzero
fields) can occur between states having the same
value of m but different values of the principal
quantum number, n, since these states have dif-
ferent values of Z, . If the Coulomb potential is
perturbed, however, Z, is destroyed as a con-
stant of motion and levels with the same value of
nz anticross as required by the "no-crossing"
theorem. ' Numerous examples of this are pre-
sented in Ref. 5. The fundamental reason for the
anticrossings is that the Stark problem only sep-
arates for pure 1/r potential.

Determination of whether or not energy levels
cross provides a sensitive test of the existence
of a constant of motion in the problem. For the
hydrogenic Stark problem the constant of motion
is a generalized Lenz-Pauli vector, and the sym-
metry is dynamical in nature. ' The Hamiltonian
is expected to be separable in some coordinate
system which reflects that symmetry. In a two-
dimensional problem, such as we are discussing
here, such a separation is tantamount to an exact
solution.

Turning now to the magnetic field problem, the
Hamiltonian is H„= 2P' —1/r+ —,'o. 'p'B', where p'
=g'+y', and we have omitted the trivial paramag-
netic term. Schrodinger's equation is separable
in eleven coordinate systems, but this Hamiltoni-
an does not fit any of the required forms. Iack-
ing a better approach, we have calculated eigen-
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ever, based entirely on the evidence of the calcu-
lated energy levels. The conjecture is also mo-
tivated by observing effects of small perturba-
tions to the Coulomb potential on level crossings.
A simple perturbation can be produced by intro-
ducing a quantum defect 6 into the zero-field en-
ergy of the l=0 state: E=--, (n —6) '. Such a
perturbation arises from any short-range inter-
action which creates a phase shift Q = m5 in the
s-state wave function. This perturbation causes
the energy levels to anticross, in close analogy
to the behavior of anticrossings for the Stark
problem in Ref. 5. In particular, the anticross-
ings obey an n ' scaling law for a constant quan-
tum defect. Il„, has a much stronger n depen-
dence, suggesting that the Coulomb potential in a
magnetic field is special. Figure 4 shows the
calculated sizes of a number of anticrossings as
a function of the quantum defect.

Because H„, is presently unknown it is in gen-
eral not possible to predict the size of repulsions
between states for which the numerical diagonali-
zation has not been done. However, there is a
trend that states from adjacent n manifolds pos-
sessing the most dissimila, r slopes (the deriva-
tive of energy with respect to field squared) have
the smallest anticrossings or (H„,). This is ex-
pected from the following consideration: States
with the largest slope lie completely in the plane
perpendicular to the magnetic field, while states
with smaller slopes are increasingly "tipped" out
of this plane. Thus, states with the most dissim-
ilar slopes have the least spatial overlap.

Identifying the approximate symmetry or the
constant of motion and finding the separable form
for the Hamiltonian has proven to be an elusive
task for us, undoubtedly made more difficult by
the fact that it cannot be accomplished for low-
lying states. Nevertheless, we are optimistic
that the goal is achievable. This would represent
an important theoretical advance and a most use-
ful development in view of the experiments cur-
rently in progress.
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FIG. 4. Anticrossing size as a function of the l =0
quantum defect. These values are taken from the first

crossing" between n = 14, 15 and n = 16, 17 manifoMs.
The error bars represent the estimated numerical er-
ror, ~ 5& 10 cm '.
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