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It is shown here how to map the problem with pseudospin J into an equivalent one in

which 1/J plays the role of # and canonical variables exist at the classical level.

Bohr-

Sommerfeld quantization of the equivalent theory is found to produce a spectrum in very
good agreement with the exact results for the Lipkin-Meshkov-Glick model at J = 15 and
25. The method readily extends to the SU({) case.

PACS numbers: 03.65.Ca

Consider the eigenvalues of a Hamiltonian ex-
pressed in terms of the generators of SU(z) in the
symmetrized N-fold tensor product of the funda-
mental representation. (Such a problem arises
in describing a system of N identical particles,
each of which may be in one of n states.) I devel-
op here a Bohr-Sommerfeld quantization proce-
dure in which 1/N plays the role of Z and is thus
complementary to numerical methods which are
good for small N. To illustrate the idea, I will
work with the Lipkin-Meshkov-Glick (LMG) Ham-
iltonian

H=elJ,+0/2))(J,2-J,], (1)

where J; are SU(2) generators of dimensionality
2J +1, with J=N/2, N being the conserved parti-
cle number. Exact solution is possible if J is
modest (by explicit matrix diagonalization®) or

if » =0, when it becomes a trivial example of a
class of models solvable by group-theoretic meth-
ods alone.? Here we are concerned with a relia-
ble approximation scheme for J large, » #0. Us-
ing the Bloch coherent states?®

|Q) =expl20(.e*®~d.e™ D] |JD), @)

Lieb* showed that in general Z = (2J +1)"*
x Tr exp(—pH), the quantum partition function, can
be bracketed by two classical partition functions:

f exp| - BHQ(Q f expl-BH@)],

®3) |
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Qe BHlQ) = lim (2J+1)"

where Hq(Q) =(Q| H| Q) and Hp(Q) is defined by
=[
In our case we get, .from Ref. 4,
Hp=€(J +1)[ cosd +37(1 +3/2J) sin’6 cos2®],
(5a)
Hq=€J| cosd +37(1 —1/2J) sin®0 cos2®].  (5b)

The B - « limit of Eq. (3) brackets E,, the ground-
state energy:

ming{ Hpt SE, < ming{H} . (6)

Fend and Gilmore® studied this inequality numeri-
cally and found that min{ Hq} is a very good ap-
proximation to E, for large J. AsJ -, Hp/J
=Hp and Ho/J = HQ approach a common 11m1t big
and

lim; -« (B, /J) =ming{ HQ)} . (7

That the exact quantum ground state can be found
by minimizing a classical & in the limit 1/J -0
is reminiscent of the way any quantum problem
becomes classical as 77— 0. It is then natural to
ask the following question: Is there some equiva-
lent quantum theory in which 1/J plays the vole
of B? Finding such a theory would help us move
off the J = limit to a region of small but nonzero
1/J. And if the equivalent theory were described
by canonical variables at the classical level,
Bohr-Sommerfeld (BS) quantization would give a
good estimate for all the levels, not just the
ground state. Here is how we find that theory.
We first write Z, as a path integral: '

(4)

dQ de,  aq,
471 4n 4_n<m(1_€H)iQ">

(@, |(1-e)|Q,.)-(Q,|(1-ea)|Q), (8)

where €=8/(n+1) and the expansion of the identity I [ Eq. (4), with H set equal to 7] has been used »

times.

The multiple integral expresses the Euclidean transition amplitude (2 |e ~?#| Q) as a sum over

discretized paths which leave @ at Euclidean time 7=0, pass @; at 7;, and return to & at time 7=,
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(Recall 7=it, and ¢ is the Minkowski time). Although these paths ave genevally nondiffeventiable, let
us write Z  in a form that is appropriate to diffeventiable paths. The reason will be clear in a moment.

To order €, we get

(Q; W1 -e)|Q;)=(Q; ,I9)-e(Q,; ,|H|Q,;)
=1-ied(l-cos6)d—eH(Q))
%exp{Jl—i(l —COSB)‘IB —ﬁo(ﬂ)]e}y

where (Q; .,/ ;) is calculated with use of

(2'192)=(cos36’ cos 50 +e® *) sinl6’ sin6)>.

(92)

(9b)

(10)

Upon dropping the $ term, because it is a total derivative and will be irrelevant in a classical Lagran-

gian, we get, in obvious notation,

Z = J (ds/4n) Joo eXp{JJ;)B[(iCOSQ)‘I;—'I;Q] dr}.

It is clear from the path integral that the original
theory has been transformed into one in which 1/
J plays the role of % and for which the Minkowski-
space Lagrangian is

L=(cos0)é-H,. (12)

Knowing the effective Planck’s constant 1/J, and
the action functional for continuous paths, we are
ready to do Bohr-Sommerfeld quantization, which
should be good when 1/J is small. This is why
we wanted Z, for continuous paths, and not be-
cause only continuous paths contribute to the inte-
gral. (Infact, such paths have zero measure.
But they are all important for the classical limit
as well as Bohr-Sommerfeld quantization.)
Proceeding along, we see that L has no kinetic
term in 0. In fact, Eq. (12) is just the Legendre
transform from ﬁo to L; ® and p=cosb are ca-
nonical variables obeying Hamilton’'s equations

b=-0l,/08, d=0,/0p. (13)

The Bloch sphere is thus the phase space for this
theory. Notice that it is compact. In this com-
pact space, the BS condition is

$pd® =2m/J, n=0,+1,£2,...,%d, (14)

where the upper bound on |#| comes from the
fact that |p| <1. Notice also that in Eg. (11),
/oo =[Dp D& is a sum over paths in phase space.
This is in fact the form of the path integral in
general. Only for the case where H(p, q) = }p?
+V (g) can one do the Gaussian functional integra-
tion over Dp explicitly and be left with the famil-
iar Feynman sum over paths in configuration
space, i.e., an integral over Dq with (:/%)[dt
xL(g; ¢) in the exponential.

Here are the results of BS quantization of the
LMG Hamiltonian [Eq. (5b)]. On a trajectory

(11)
labeled by I?Q =EQ,
_ 77 1[77% + cos2 (cos2d — 2E,/€7) |1/
E cos2® » (19)
where
7 =r(1-1/2J). (16)

Since Eg~ — Eq under p——p and ®—-& + 7/2, it is
clear that the BS levels will have mirror symme-
try about £ =0. Notice also that —& + 7 does
not change Ej. '

In the trivial case » =7 =0, it is easy to see
that

Bq=ne/J, n=0,+1,+2,,..,%d, 1)

which agrees with exact values of E/J. The BS
orbits in this case are 2J+ 1 equally spaced (in
p =cosf) latitudes on the Bloch sphere, with £
=+ € being represented by p =+ 1 (the poles). We
shall call these global orbits because they go
around the north pole or, equivalently, because
& grows monotonically. For 0<7 <1, only the
minus sign in Eq. (15) satisfies [p|<1. The or-
bits are again global. But now p(®) oscillates
with maxima at & =+ 7/2 and minima at & =0 and
7, except for the £ =+€ orbits which stay at the
poles. For 7>1, these too begin to oscillate.
Four extra sets of orbits are formed in the void
so created (Fig. 1). Their entry at # = 1 signifies
the phase transition noted by Feng and Gilmore.®
There are two degenerate families in the upper
hemisphere which circulate around the points

(p =1/7, =0 or 7) and have € <Eq < (7 +1/7)
and two other degenerate families in the southern
hemisphere which circulate around (p =-1/7,

$ =+7/2) with - 3 e(r +1/%) sEg<—€. Such local
orbits are possible in this case because both
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FIG. 1. A few orbits for ¥ =2, J=25 labeled by £ =E/
Je. At Iél =1, global orbits stop and local orbits begin.
Only the region 0 S®<7/2 is shown. Reflection on the
line ®=7/2 gives the curves for /2 S&<m, while in-
variance under & —~ — & gives curves for —T<® <0.

signs are allowed in Eq. (15). (The distinction
between local and global orbits is not absolute
and depends on our coordinate system.) Figure 1
shows some of the orbits for the case J=25, 7
=2. (The Bloch sphere has been opened into a
rectangle.)

Table I compares the positive energy eigenval-
ues from the BS calculation with the exact results
from LMG* for E =JE 4 at J=15 and » =0.6, 1 and
5. In the first two cases the agreement is uni-
formly good. Notice that states with small quan-
tum numbers are not any worse predicted. This
is because small » does not mean a small global
orbit. In the third case there are the following
problems in the transition region (£, =~ €) between
local and global orbits: (i) The level at E/€ =20.0
is not exactly degenerate, (ii) a few global orbits
below the transition point seem to be raised up-
wards in the exact answer, and, more seriously,
(iii) the degenerate partner of the BS level at E/¢
=16.1 is missing in the exact answer, All these
problems are presumably due to tunneling and
mixing of orbits in this energy region.

The calculations were repeated at J =25, Not
surprisingly, the same general features pre-
vailed, with uniformly smaller errors. (Analysis
at J=25, ¥ =2 showed that the BS analysis gives
one state less unless I accept a BS orbit with n
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TABLE I. Positive energy eigenvalues (in units of €)
of the LMG Hamiltonian for »=0.6, 1, and 5 and J =15,
compared with results of BS quantization.

r=0.6 r=1 r=5

BS LMG BS LMG BS LMG
15 15.1 15 15.3 37.8 38.0
14.2 14.3 14.5 14.8 37.8 38.0
13.3 13.4 13.8 14.1 31.3 31.4
12.4 12.5 13.0 13.3 31.3 31.4
11.4 11.5 12.1 12.4 25.3 25.4
10.5 10.5 11.2 11.4 25.3 25.4
9.5 9.5 10.2 10.4 20.0 20.1
8.5 8.5 9.1 9.3 20.0 20.0
7.5 7.5 8.1 8.3 16.12 16.1
6.4 6.5 6.9 7.1 14.3 15.2
5.4 5.4 5.8 6.0 12.2 12.6
4.3 4.3 4.7 4.8 10.0 10.4
3.2 3.3 3.5 3.6 7.6 7.9
2.2 2.2 2.3 2.4 5.2 5.3
1.1 1.1 1.2 1.2 2.6 2.7
0.0 0.0 0.0 0.0 0.0 0.0

2Degenerate partner missing, presumed to be un-
bound by tunneling.

=18.8 instead of 19. Some improvisation seems
inevitable in the transition region.)

This would be the end of the present discus-
sions were it not for the fact that theve exists
anothev continuum theovy that follows from the
same Z ,, which differs only in that Hy—=H p in
Eq. (11). To show this, we must, instead of in-
serting the identity between the factors (1 - €H),
write each one as

1-€eH

=[(2J +1)/4n] [dQ;|Q)[1 - eH p(2,)KQ,|  (18)
and work to order €. That we have two continu-
um representations for the same theory is not a
contradiction, since continuum formulas like Eq.
(11) are merely formal and need to be defined by
a discretization procedure. This procedure will
differ in the two cases in such a way as to lead
back to the same Z . On the other hand, with re-
spect to BS quantization, which is not exact, A P
and H ¢ offer two inequivalent possibilities, What
would happen if the above analysis were repeated
with H p? As for the ground state, which will be
given by a pointlike BS orbit at the minimum on
the Bloch sphere, we have from Lieb, Eq. (6),

EF<E/<ES. (19)
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As for the highest state, we have, either from
mirror symmetry in this problem, or in general,
from the f = — limit of Eq. (3) (which exists for
a system with an upper bound on the energy),

ES<E,/I<E/F. (20)

Mirror symmetry, plus the fact that 2/ +1 is odd
implies that there is a level at E/J/ =0 in all three
cases, Given the above, I conjecture that every
exact level is bracketed by the two BS levels,
with p generating the lower bound for negative
energies and g o generating the lower bound for
positive energies. Explicit computation shows
that such is the case. I also find that ﬁQ gener-
ates values much closer to the exact ones (a fea-
ture noted by Feng and Gilmore® for the ground
state) which is why these values are listed in
Table I. (From the derivation, it must be clear
that p and H ¢ do not exhaust the possible classi-
cal Hamiltonians; that they merely bracket the
continuum of possibilities.)

Since completing this work, I have learned of
several pieces of interesting and related work,
which will not be discussed here because of lack
of space: that of Jevicki and Papanicolaou® on
path integrals for spin, that of Levit, Negels,
and Paltiel” on a BS calculation with use of mean-
field variables, that of Kuratsuji and Mizobuchi®
on the semiclassical treatment of spin path inte-
grals, and the pioneering work of Klauder® on co-
herent-state path integrals. Professor F. Iachel-
lo informs me that Gilmore'® has found the classi-
cal Lagrangian that governs the evolution of the
coherent states in the time-dependent Hartree-
Fock approximation for SU(2) and other groups.
His L coincides with mine, as it should. Of spe-
cial significance is his finding that in all cases L
=304, -Hq, which means that the Block sphere
is a classical phase space. However, BS quanti-

zation in the cases with more degrees of freedom
will be harder.!’ Lastly, there is the work of
Kan et al.,”* which reaches many similar conclu-
sions from the time-dependent Hartree-Fock ap-
proach and also clarified the revision between
the two approaches.
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