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This Letter describes a calculation using superfield techniques, showing that the P func-
tion is zero to three loops in N=4 supersymmetric Yang-Mills theory. This result gives
further indication that the theory is likely to be finite and conformally invariant order by
order in perturbation theory.
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We present the results of a computation of the
three-loop P function in N = 4 supersymmetric
Yang-Mills theory. ' This theory is of special
interest because it is a candidate for a finite four-
dimensional quantum field theory, and the only
known candidate for a conformally invariant one.
It is known from previous calculations that the
one- and two-loop P function is zero."We have
extended this result to the three-loop level using
supergraph techniques. "We understand that the

!
vanishing of the three-loop P function has also

been established in a computer calculation by
Tarasov with use of conventional Feynman graphs. '

The lV= 4 supersymmetric Yang-Mills model is
a conventional theory containing the following
physical fields: one Yang-Mills vector, four
Majorana spinors, three scalars, and three pseu-
doscalars. All the fields are massless and in
the adjoint representation of an arbitrary com-
pact semisimple group. In addition to the gauge
couplings, there are specific Yukawa and spin-0
self-interactions all governed by the same gauge
coupling constant. The Lagrangian is'

where the o.'s and P's are 4&&4 SU(2) XSU(2) matrices, i =1, 2, 3; h =1, 2, 3, 4. '
The classical action is invariant under SU(4) superconformal transformations: four supersymmetry

and four special supersymmetry transformations, ' conformal transformations, and global SU(4) rota-
tions. As a supersymmetric theory, it has a particularly simple description in terms of N= 1 super-
fields": one real superfield V(x, 6, ~) (vector multiplet), and three chiral superfields y, (x, 8) (scalar
multiplets). The action is

S=Tr(fd4x d'8e 'r y'e~"y, +(64g ) ' Jd~x d28 W W„+((ig/31) Jd4x d 6e, ,„q;[rp, , y„j+H.c)),
W„=D'(e "D e'")- (2)

(3)
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and is renormalizable by power counting and

gauge Slavnov-Taylor identities. ' Because the ac-
tion (2) is written in terms of X= I superfields,
it is manifestly invariant only under global SU(3)
rotations of the chiral fields and under one of the
four supersymmetry transformations. The re-
maining three and global SU(4)/[SU(3) SU(l) ]
transformations are realized as follows:

~ e"= ig( x; v
*e"- e"x ' 0;),

5p, =(i/Bg)W"D g, ——,'e, ,~D'X'e cp e

The parameter y;(0) is a constant chiral super-
field (D y, = s, y;=0) which induces central
charge transformations at the 0-independent level,
supersymmetry transformations at the linear
level, and SU(4)/[SU(3) SU(1)] transformations
at the quadratic level.

By superfield power counting the chiral three-
point function (T(p; q, y~)) is finite, and hence
the P function is determined entirely by the cor-
rections to the propagator (T(y, q', )). ' As a re-
sult, the evaluation of the P function at the one-
and two-loop level is easy, and at the three-loop
level can be performed by hand. In contrast,

P 1

component calculations separately examine the
ghost-vector vertex function and the ghost and
vector propagators (all of which are divergent
already at the one-loop level) and are far more
complic ated.

In Ref. 3, we have shown that all one-loop prop-
agator corrections vanish, and have calculated
the one-loop (T(@,y„q, )) and (T(y; V&y, )) effec-
tive vertices, as well as the two-loop contribu-
tions to (T(y,. y, )). All of these quantities are
finite, and we have shown that al/ other Aeo-looP
Green functions are also finite.

The determination of the three-loop P function
involves the evaluation of the divergent part of
the supergraphs in Figs. 1 and 2 (because of
group theory, nonplanar graphs are zero; others
are also zero because of their structure in 6
space). In Ref. 3 we have given the Feynman
rules for this model. In particular we have shown
that the propagators are 6 functions in 0 space
while vertices give covariant spinor derivative
D, D- acting on these 6 functions. Using the
methods of Refs. 3 and 4 we can perform, by a
sequence of integrations by parts, the integration
over internal 8 variable. The algebra of the D's
introduces momentum factors in the numerators
of the Feynman integrals which cancel some of
the propagator denominators. Thus the evalua-
tion of divergent contributions of the supergraphs
in Figs. 1 and 2 is reduced to that of scalar inte-
grals corresponding to the ordinary graphs de-
picted in Fig. 3. We have calculated only the
ultraviolet-divergent parts of the supergraphs;
in graphs containing both ultraviolet and infrared
divergences we have taken care to extract the
former. Details of our calculations will be de-
scribed in a separate publication.

Supergraphs listed in Fig. 1 in general contrib-
ute to all the scalar integrals in Fig. 3, whereas
the supergraphs in Fig. 2 contribute only to Fig.
3(e). We note that the integrals in Figs. 3(a)-3(d)
contain subdivergences and hence will give higher-
order poles if evaluated by dimensional regular-

FIG. 1. Some contributions to the three-loop chiral
self-energy corrections. The solid lines represent
chiral propagators, the wavy lines, vector propagators.
The number j. inside triangle subgraphs represent total
one-loop effective vertices.

Flo. 2. Two-loop se1f-energy contributions to the
three-loop chiral self-energy corrections. (d) Diagram
corresponding to a finite renormalization of the gauge-
fixing parameter needed to keep the two-loop vector
propagator in Feynman gauge.
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FIG. 3. Scalar integral diagrams resulting from those
of Figs. 1 and 2 after ~ integration.

ization; by contrast Fig. 3(e) has only I/c poles.
However, since the P function vanishes at one
and two loops, such poles must be absent and
hence the total contribution to these diagrams
should cancel. It is a gratifying check of our cal-
culations that these integrals receive the follow-
ing contributions:

h —&+ ———+—+ ~ —~ [of Fig. 3(a)],

16 6 2 24 2 4 4 8 4 8 4 24 16

[ of Fig. 3(b)J,

—1~6+1 ——,'+ —,', -~- —,
' ——'- —' [of Fig. 3(c)j

—~+~+~+~+,—', [of Fig. 3(d)j.

We now discuss the contributions to the danger-
ous scalar integral of Fig. 3(e). Those of Figs. 1,
2(a), and 2(b) are —++1 ——,'. Figure 2(c) does not
contribute: The longitudinal part of the (T(VV))
propagator receives no corrections as follows
from Slavnov-Taylor identities, and the trans-
verse part gives only ultraviolet-finite contribu-
tions. To avoid infrared complications (p 4

terms in the vector propagator), we have done
all our calculations in Fermi-Feynman gauge; in
order to stay in that gauge, we must renormalize
the gauge-fixing parameter by a (finite) amount
determined by the two-loop corrections to the
vector propagator. This gives rise to Fig. 2(d)
and a —8 contribution to the scalar integral in
Fig. 3(e). The total contribution vanishes, the
two-point function is finite, and therefore the
three-loop P function is zero.

It seems very likely that the vanishing of the P
function will persist to higher orders and it would
be desirable to give a general proof of this. We
expect that in a formulation in terms of N=4
superfields the finiteness of the theory would be
manifest. Our N = 1 superfield formulation ob-
scures the manifest N = 4 invariance and replaces
it by the nonlinear transformation laws of Eq. (4).
These laws do relate the finite (T(y,. q „y,))
vertex to the other sectors of the theory and
could, in principle, establish the finiteness of
the theory. However, due to the nonlinearity of

these transformations, and our inability to find
an N = 4 invariant Yang-Mills gauge-fixing term,
we were unable to extract any useful information
from the corresponding Ward identities.

Since N = 4 symmetry is not manifestly main-
tained, the theory described by the classical ac-
tion (2) could actually have two independent P
functions (in the component approach the situa. —

tion is worse, and there could be at least three
P functions). We present the following argument
that both our p functions are equal: In a Wess-
Zumino Yang-Mills gauge, the classical action
becomes that of Eq. (1) and contains Yukawa
couplings of the component fields, some of which
arise from the gauge superfield couplings, while
others arise from the trilinear chiral superfield
coupling. In this gauge these particular couplings
are related by the global (linear) SU(4) trans-
formations' which are unaffected by gauge fixing.
Hence the corresponding P functions must be
equal. Since P functions are gauge invariant,
they must remain equal in our supersymmetric
gauge.

Our results indicate that many (and perhaps all)
Green's functions are finite up to the three-loop
level. Therefore the superconformal invariance
of the classical action survives quantization. It
is possible that this and the other invariances of
the theory are sufficiently strong to permit a com-
plete solution of the model. One could then en-
visage treating related theories by means of a
perturbation expansion about this solution. "

Recently, one of us has pointed out" that the
trace anomaly vanishes in some versions of N =8
supergravity as well. Since both are maximally
extended supersymmetric gauge theories, one
may hope that N= 8 supergravity shares the
higher-loop finiteness properties of N =4 Yang-
Mills theory. If, however, extended supergravity
theories fail to be finite, " then perhaps gravity
can be described by bound states of N =4 super-
symmetric Yang-Mills fields. This is the case
in dual models, '3 where the graviton (closed
string) sector arises as bound states of the Yang-
Mills (open string) sector. Indeed the N=4 Yang-
Mills theory is the zero-slope limit of a unitary
dual model which includes fermions, and conse-
quently one would expect an effective N = 4 super-
gravity theory to arise. ' We also note the possi-
bility of a mechanism suggested by Englert, Gast-
mans, and Truffin" whereby dynamical break-
down of conformal symmetry leads to the genera-
tion of gravitons. The N = 4 supersymmetric
Yang-Mills theory is an obvious candidate for the

1065



VOLUME 45, +UMBER 1) PHYSICAL REVIEW LETTERS 29 SEPTEMBER 1980

conformally invariant theory required by their
mechanism.

We would like to thank P. van Nieuwenhuizen
for very useful discussions, and our colleagues
in supergravity research for vigorous encourage-
ment. We would also like to thank the CERN
Theory Division, the "Ettore Majorana" Cultural
and Scientific Centre, and Department of Applied
Mathematics and Theoretical Physics, Univer-
sity of Cambridge, for their hospitality during
various stages of our work, and the Nuffield
Foundation for support. This research was sup-
ported in part by National Science Foundation,
Grant No. PHY-79-20801, and U. S. Department
of Energy, Contract No. DE-A502-76ER02220.

Present address: California Institute of Technology,
Pasadena, Cal. 91125.

F. Gliozzi, J. Scherk, and D. Olive, Nucl. Phys.
B122, 253 (1977); L. Brink, J. H. Schwarz, and
J. Scherk, Nucl. Phys. B121, 77 (1977).

E. C. Poggio and H. N. Pendleton, Phys. Lett. 72B,
200 (1977); D. R. T. Jones, Phys. Lett. 72B, 199 (1977).

M. T. Grisaru, M. Rocek, and W. Siegel, Nucl. Phys.
B159, 429 (1979).

L. F. Abbott and M. T. Grisaru, ' The Three-Loop P
Function for the Wess-Zumino Model" (to be published).

We thank A. Slavnov for informing us of this result.
J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).
P. Fayet, Nucl. Phys. B149, 137 (1979).
S. Ferrara and O. Piquet, Nucl. Phys. B93, 261

(1975).
S. Ferrara, J. Iliopoulos, and B. Zumino, Noel.

Phys. B77, 413 (1974).
G. 't Hooft, private communication.
W. Siegel, unpublished.

'2P. Howe and U. Lindstrom, in Proceedings of the
Nuffield Supergravity Workshop, Cambridge, England,
22 June —13 July, 1980, "Progress in Supergravity, "
edited by S. W. Hawking and M. Hocek (Cambridge
Univ. Press, to be published).

For a review, see J. Scherk, Rev. Mod. Phys. 47,
123 (1975).

F. Englert, C. Truffin, and R. Gastmans, Nucl.
Phys. B117, 407 (1976).

New High-Accuracy Measurement of the Pionic Mass

D. C. Lu
Yale University, Ne'er Haven, Connecticut 065ZO

and

L. Delker, G. Dugan, and C. S. Wu
Columbia University, Neu York, Nese York lOOZ7

A. J. Caffrey, Y. T. Cheng, and Y. K. Lee
Johns HoPkins University, Baltimore, Maryland ZZZ18

(Received 19 May 1980)

The pionic x-ray energies of the 4f-Bd transition in n-P and the Gf-4d transition in n-
Ti were measured with a bent-crystal spectrometer at the Nevis synchrocyclotron; and

a new value of the pionic mass is deduced to be 139567.5+ 0.9 keV, leading to an im-
proved value for the p, -neutrino mass of m&„=0.102+ 0.119 MeV; mlj& & 0.52 MeV, at 90Vo

confidence level.

PACS numbers: 14.40.Dt, 36.10.Gv

Using a high-resolution, large-aperture bent-
crystal spectrometer, we have measured at the
Nevis synchrocyclotron the pionic x-ray energies
of the 4f 3d transition in v--P and the 5g 4ftran--
sition in v-Ti, from which we have deduced the

mass value, m„-, to an accuracy of +6.4 ppm.
These transitions were selected for the following
reasons: (1) higher performance of the spectrom-
eter near 40 keV, such as higher efficiency and
better fractional energy resolution &E/F. , (2) low-

er theoretical corrections in deducing m, -, as
compared to transitions in higher-Z &-atoms,
such as for vacuum polarization, strong interac-
tion, and orbital electron screening, and (3) the
availability of a good calibration y ray. The ex-
perimental setup has been described in an earlier
Letter, ' but will be summarized again with addi-
tional relevant information. We refer to the pre-
vious Letter for more details and a figure of the
setup.
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