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A generalization of the nonlinear 0 model is considered. The field takes values in a
compact manifold I and the coupling is determined by a Riemannian metric on M. The
model is renormalizable in 2+ ~ dimensions, the renormalization group acting on the
infinite-dimensional space of Hiemannian metrics. Topological properties of the P func-
tion and solutions of the fixed-point equation A;; -n g;; =V'p, +V, v;, & = + j. or 0, are
discussed.
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Several years ago Polyakov' studied the renor-
malization of the O(N)-invariant nonlinear v mod-
el in 2+& dimensions in the low-temperature re-
gime dominated by small fluctuations around or-
dered states. He found an infrared-unstable fixed
point at a temperature of order &. The unstable
renormalization-group trajectory gives a model
critical system in its scaling limit or, equivalent-
ly, a Euclidean quantum field theory. ' In two di-
mensions the model is asymptotically free.

I describe here' a more general model to which
Polyakov's approach is appropriate: a field p(x)
taking values in a compact manifold M, governed
by the action

S(Cc ) = A' fdx 2T 'g, ,(p(x))S „cp'(x)S„p'(x), (l)

where A ' is the short-distance cutoff. The di-
mensionless coupling T 'g„. is a Riemannian met-
ric on M.' The standard nonlinear o models have
M a homogeneous space and g&,. an invariant met-
ric ~

Correlation functions are generated by the par-
tition function

Z(h) =f/ „dy(X) exp[-S(y) +H(y)],

where the a priori measure dp(x) is the metric
volume element on M and H(y) =A"'fdx[h(x)]
(y(x)), h being an external field, each h(x) a

J, '(m, o (x)) = &,.'+ ,'o"(x)v'(x—)R'„„(m)+. . . ..
g(m, v(x)) =g„(m) + —,

' v'. (x)v'(x)R„„.(m) +. . . .

function on M. The k-fold correlation function
takes values in the unit measures on M:

&~ |x,) ~ ~ ~(x, ))

8 8

»(,) h( )

The double expansion in T and e is constructed
as a renormalizable perturbation series. ' Only
fields close to the constants play a role; Z(h)
= f dmZ(m, h), where Z(m, h) is the sum over small
fluctuations around the constant p(x) =m. A choice
of coordinates around each point m in M gives a
linear representation for the fluctuations: The
linear field o'(x) is p(x) in coordinates around m.
The sum over fluctuations becomes

Z(m, h) =fdoexp[- 8'(m, o') +H(m, cr)],

dv =g,dv(x) exp[A" fdx indetAm, v(x))], (Sb)

S(m, v) = fdx2T 'g), (m, cr(x))&„v'(x)s„v'(x), (Sc)

H(m, cr) = fdxh(x, m, v(x)), (Sd)

where g, ,(m, v(x)) and h(x, m, v(x)) are the metric
and external field in coordinates around m and

detZ, . '(m, v(x)) is the Jacobian of the coordinate
map from v(x) to Ccr(x). Propagators and vertices
come from expansion in powers of v. Normal co-
ordinates yield

(4a)

(4b)

h(x, m, v(x)) = Q (l/n!)v"'(x) ~ ~ ~ o"&(x)v„~ ~ ~ v„[h(x)](m) .
n=0

(4c)

To each constant m corresponds a perturbation
series whose vertices are in the most general
form required by power counting, so that it is
prima facie renormalizable. But the existence of
an underlying nonlinear theory means that the ver-
tices for one constant m determine those for all

nearby m' by translation of coordinates and shift
of origin. To renormalize the nonlinear theory
the renormalized vertices must be made to satis-
fy an equivalent renormalized invariance. That
this can be done is shown in Ref. 3.
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(6)

The P function P (g) is a vector field on the space
of metrics and y(g)h(x) is a linear vector field on
functions.

The order parameter @'(x) dual to h(x) takes val-
ues in the nonnegative unit measures on M. The
free energy

r(C) =max„[ l~-(h)+p"'fdx(h(x), @(x)j] (7)

satisf ies the renormalization- group equation

~ —'+I-:I(g)—' -y*(g)C ( )
'

r(C) =0, (S)sp sg a4(x)

Benormalized as dictated by power counting, at
a scale set by p,

gr, =(~/V) 'gr (~,A/W, g'),
h(x) =(A/p) ' 'Z, (e, A/p, g")h (x)+h, (e,g),

(5b)

where g&, and h (x) are the renormalized coup-
ling and external field, Z, is a linear operator on
functions on M, and h, serves to remove quadratic
divergences. In the following only renormalized
quantities are discussed; the superscripts R are
suppressed.

The partition function satisfies the renormaliza-
tion- group equation

R)~ —Qg]g =V]5J +V~+ ] ) cM =k 3. or 0, (10)

Writing the coupling in the form T '(g, , +h, ,),
with T and k&j small, and keeping only terms of
topological signif icance:

(1la)

metrics with symmetry), ' over which the external
fields form a vector bundle. The renormalization
group has its fixed points where h(x) vanishes and
P (g) is an infinitesmal reparametrization: P, , (g)
=V&v, +V;v& for v a vector field onM.

The coefficients p and y are natural functions
of the metric: When g;, is transformed by a re-
parametrization of M, P, , (g) and y(g) undergo the
same transformation. In particular, if g is un-
affected, then so are)6 and y. Thus the renormal-
ization group preserves internal symmetry.

Since a homogeneous space has the same geome-
try at every point, the couplings of any standard
model comprise a finite-dimensional submani-
fold of the metrics at one point in M. Group-theo-
retic formulas for renormalization-group coeffi-
cients are given in Ref. 3.

Global topological information on the P function
for small T is available when I has dimension 2
and also when M is homogeneous. In both cases
the P function is a gradient through two loops. '

The fixed points correspond to so1utions of

where y(g) = —(2+@)+y(g).
To two loops, ' with use of dimensional regular-

ization and renormalizing by minimal subtraction,
g
=- V,V, + first order terms, (lib)

Pr, (& 'g)

= —tT grr +Rrr +2T(RrrrnRgrrn)+O(T ),

y(r-'g) =- .'rv, v, +o(r'). —
(9a)

(»)
R&, =R &~; is the Ricci tensor and T has been re-
placed by 2&T.

The renormalization group has meaning only as
it acts on the equivalence classes of metric coup-
lings and external fields under reparametriza-
tions (diffeomorphisms) of M. The partition func-
tion Z(h) sees no change when both gr, and h are
subjected to the same reparametrization; thus
no normalization condition can distinguish among
members of the same equivalence class. The
construction and renormalization of the perturba-
tion series respect this covariance.

The diffeomorphism classes of metrics make
up an infinite-dimensional manifold (singular at

y = —(2+a) +2Th» 4& =- &&Vr —2u'V& . (llc)
The only meaningful hr, directions are those trans-
verse to the reparametrizations and to the T di-
rection. ~8 is an elliptic operator with positive
leading part, and so the number of unstable or
marginal 0 directions is always finite. The flat
metrics (R„„,=0) have trivial perturbation theo-
ries; in the following they are excluded from the
case a =0.

When & =1 or 0, there is a nontrivial fixed point
for E) 0 at T =~ or T=~' ', infrared unstable in
at least the T direction. When e is —1, there is
a fixed point for a&0 at T= —&, infrared stable in
the T direction. In all three cases, there are also
trivial fixed points at T =0. No other kind of fixed
point at nondegenerate coupling is possible be-
cause when the two-loop term in the P function
vanishes, i.e ~ o RgkinR&kin V~ R . +V ~ Kg then
f dm R;„r„Rr„r„=0,and so Rr;)rr =0.
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In two dimensions the trivial and nontrivial
fixed points merge at T =0, asymptotically free
in the small when + =1,0 and in the large when
a =-1. When n =0, P(T) vanishes to second or-
der in T, and so the approach to freedom is ex-
traordinarily slow.

All known solutions of (10) are actually Einstein
metrics (v' =0). For n =1, there is available only
one example which is not locally homogeneous. '
Among the homogeneous spaces those admitting
just one invariant metric are necessarily Ein-
stein, ' but others with less symmetry are known. "
Some have instability in A directions, and so pro-
vide model multicritical points. ' The only known
Bicci-flat spaces (o. =0) are the Kahler manifolds
of Yau." Einstein metrics with o. =-1 are known
in two varieties: the locally symmetric spaces
of noncompact type and the Kahler metrics of
Yau"

For ~&0, n =0 or 1, the long-distance physics
is qualitatively familiar. Below the critical tem-
perature, long-distance behavior is governed by
the trivial fixed point at T =0, so that there is a
degenerate set of pure equilibrium states, lab&led
by the points in M. At T =0 the free energy I"(4')
is minimized by the point measures @ (x') =& .
As T increases, the set of minima is stillM, but
the minimizing order parameters have diffused
outward; to lowest order C =exp(s&z*)(5 ), s
=2 ln(l —T/T, ). At T =T, the degeneracy of equi-
libria disappears, the @ having converged to the
unique measure annihilated by y*. To lowest or-
der the anomalous dimensions of 4(x) are deter-
mined by the eigenvalues of 4&. Long-distance
properties for T &T, are not accessible to per-
turbation theory, but the system presumably re-
mains disordered.

A solution of (10) with v' not a gradient would
show some novel features: Approaching the criti-
cal surface, the order parameter would drift as
it diffused (because of the term —2v' V, in b. z)
and the anomalous dimensions could be complex.

The n =-1 fixed points are analogous to p'
fixed points near four dimensions, the e expan-
sion probing dimensions below 2. The scaling
limit in two dimensions is trivial, and so it would
seem more interesting to attempt an interpreta-
tion of the T =0 fixed points as the long-distance
terminals of trajectories originating on a critical
surface at nonzero T. Infrared asymptotic free-
dom implies a, correlation function (p(x)p(0)) de-
caying as (ln[x[) & for large ~x~. But high-tem-
perature series for lattice versions of the non-
linear models always show finite correlation

lengths, and so there must be an intervening
phase transition. The locally symmetric n = —1
spaces all have nontrivial, non-Abelian fundamen-
tal groups, allowing topologically stable vortex-
like field configurations. Phase transitions due
to dissociation of multivortex bound systems
might be expected. " Other of the n = —1 mani-
folds, being simply connected, call for different
mechanisms.

Construction of a nonstandard model requires
the bare a priori measure dp(x) which avoids non-
spontaneous long-range ordering. For asymp-
totically small T it can be calculated from the re-
normalization-group equation for the bare exter-
nal field. It depends on the method of short-dis-
tance regularization and differs from the metric
volume element whenever h, in Eq. (5b) is non-
zero. The difference is of order T, so in two di-
mensions the critical a priori measure is exactly
the metric volume element. But an infinite num-
ber of relevant couplings (the external fields)
must be fixed in order to bring the a priori meas-
ure to its critical value. In this sense the non-
standard models are unnatural. The standard
models have enough internal symmetry to deter-
mine the a priori measure uniquely, and so for
them these issues do not arise.
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In quark-quark scattering where a hard gluon is radiated, a charge-conjugation asym-
metry is examined and found to be large. The perturbative quantum-chromodynamic pre-
diction for this asymmetry is compared with that for an Abelian theory and an appreciable
difference is found. The specific role of the trilinear coupling is significant. A program
is set forth for three-jet experiments in hadron-hadron collisions in which the non-Abelian
issue can be studied.

PACS numbers: 11.30.Er, 12.20.Hx, 12.40.Cc, 13.85.Kf

The presently accepted theory of strong inter-
actions, quantum chromodynamics' (QCD), is a
non-Abelian, color SU(3), gauge theory with an
octet of vector gluons as the carriers of the
strong force The .experimental testimony' on
behalf of this theory includes the inferential ex-
istence of the quark and gluon, their spin assign-
ments of 2 and 1, respectively, and evidence for
the coupling qqg. However, the question of wheth-
er the gluon is indeed the color gauge particle
with the predicted self-couplings remains unan-
swered.

There seems to be no easy path leading to the
trilinear and quadrilinear couplings of the gluons.
The self-coupling effects are generally either
very small and/or indirect. ' The scaling viola-
tions in gluon jets may require rather higher en-
ergies for a definitive test.

In this Letter, we wish to stimulate interest in
a new, direct way of discerning the non-Abelian
effects, which shifts the emphasis towards proton
machines. This involves char ge- conjugation
asymmetries in three-jet production from hadron-
hadron collisions, and rests on the possibility
that jets can be correlated with their parent par-
tons. At large momentum transfers, we appeal
to asymptotic freedom and use perturbation theo-
ry. As an example, we calculate the asymmetry
between quark and antiquark jets for a given gluon
jet, and find that there is a significant difference
between the Abelian and non-Abelian cases. Both
of the color effects, the trilinear coupling and
the non-Abelian qqg coupling, are important de-
terminants of this difference.

We first consider the reaction qq- QQg; a re-
action which is the basis of the three-jet asym-
metry in the hadron collisions of interest. The
two quarks, q and Q, are taken to be massless
and to have different flavor. The quark charge-
conjugation asymmetry is defined in terms of the
differential cross section do(Q) as

do (Q) —do(Q)
da(Q)+d(r(Q)

'

For the calculation of each do, the diagrams of
Fig. 1 are needed. Averaging and summing over
spin and color, the traces can be checked against
expressions to be found in Ref. 4. Classifying the
contributions with respect to Q-Q interchange, the
trigluon coupling contributes only to the symmet-
ric terms (denominator), while the antisymmetric
terms (numerator) arise because of initial and fi-
nal gluon bremsstrahlung interference.

Not only is the asymmetry A. nonzero in lowest
order, it is generally quite large. In the q-q
c.m. frame, a benchmark is defined to be the con-
figuration where all the particles in qq —QQg are

q Q

DP~ g

q Q

+ o(g')

FIG. 1. Lowest-order graphs for gluon bremsstrah-
lung inqq-QQg, q &Q.
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