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Regge Slope and the A Parameter in Quantum Chromodynamics:
An Empirical Approach via Quarkonia
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The string constant (or, equivalently, the asymptotic Regge slope &') is related to the
A parameter in quantum chromodynamics (@CD). The empirical information from the

4, & spectroscopies is used to determine this relation. In so doing a quarkonium poten-
tial in excellent agreement with experimental data is also obtained. It is found that &~
=0.5 GeV and o.'=1 GeV

PACS numbers: 12.20.Hx, 12.40.Cc, 12.40.Mm

In the past year, a reasonably simple picture
of the structures of quantum chromodynamics
(QCD) has emerged, mostly due to the works of
Creutz, Wilson, ' Kogut, Pearson, and Shigemit-
su, ' and Callan, Dashen, and Gross. ' It seems
that qualitatively different physics appears at dif-
ferent distance scales, which are governed by an
effective coupling g(r). At large distances, the
string constant 0 of the strong-coupling limit
emerges naturally. At short distances, the only
dimensional quantity in QCD (besides quark mass-
es) is the renormalization scale parameter, A,
describing the asymptotic-f reedom behavior of
g(r) in the weak-coupling limit. If quark masses
can be neglected, there is only one free parame-
ter in QCD; hence it must be possible to evaluate
the relation between k and A.

In fact, the derivation of just such a relation
has been suggested by various authors. ' ' How-

ever, at this moment, none of the methods sug-
gested can give us (in QCD) the relation between
A, which has been measured in deep-inelastic
scattering experiments, and the Regge slope a',
as measured in light-hadron spectroscopy. In
this Letter, we shall demonstrate that this can be
achieved in an empirical way by combining the in-
formation from quarkonia (which probe intermedi-
ate distances) with the present theoretical under-
standing of QCD at small and large distances. ~

In so doing, we obtain a quarkonium potential in
excellent agreement with the experimental data.

Let us consider the static potential between a
heavy-quark-antiquark pair in the color singlet
state. Its three-dimensional Fourier transform
is given by (for momentum transfer Q, Q2&0)

1'(Q') = —(4~)'C.(R)p(Q')/Q'

This defines an effective coupling constant o.,(Q2)
=g'(Q')/4n = 42p—(Q'). The group factor C,(R)
equals -', in QCD. '

At short distances, i.e. , t=Q'/A' large, we
have

~b ln lnt
b Int b (b 1 t)'

where b, = ~C2(G) ——, Nz and

b, = ~~[C (G)]2 —~M C. (G)Nf —2C (R)N~

(2)

1 b

p(p) p.
" = ——1-~p+0(p') (4)

For large values of p, we have, from Eq. (3),

P(p) - —p[1+O(1/p)]. (5)

The connection between the Regge slope and the
A parameter requires the knowledge of the P func-
tion for all values of p, O~p&~. In general, we
can integrate P(p) to give p(Q'); in terms of A, we
have

as given by asymptotic freedom calculations. '
The inclusion of b, is necessary to give A a well-
defined interpretation. Here A is defined in the
standard way where the coefficient of the (lnt) '
term is taken to be zero. At large distances,
i.e. , t small, linear confinement is expected,

p(Q') -&/Q'.

It is straightforward to check that this implies
V(r) br for-large distances. The asymptotic
Regge slope is given by (a') '=2vk=422C, (R)K.

The P function corresponding to p(Q') is defined
to be P(p) =Q'(&p/BQ'). For small values of p, we
have, from Eq. (2),

Q2 I b 1 b, 1 1
n—= +b' ln(b p)+ dh

where the constant of integration [i.e. , the (b,/b, ') lnb, term] is determined by Eq. (2) for small p.
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Equation (6) is arranged so that the integral vanishes in the limit as p goes to zero. We can also
write p(Q ) as a function of the string constant. Integrating P(p) in terms of K, as given in Eq. (3),
we have

~K
ln —, = lap+

p

where the integral is finite for any positive value of p [see Eq. (5)]. To obtain the relation between the
Regge slope and the A parameter measured in deep-inelastic experiments, we observe that

ln(A/A —,) = (1/2bo) (~ C2(G) —~ N~ ),
where Eq. (8) is derived by extending the calculations of Susskind and Fischler to include light fer-
mions. A—,is related to the A, in the minimal-subtraction scheme: A—=2.656A, . Ke note that the
Q' dependence and the p dependence both drop out in the sum of Eqs. (6) and (7). Substituting Eq. (8)
into this sum, we obtain the following equation:

—1n(a'A —,') =in[4m C,(R)]+b, '(~C, (G) —~Nz )+—+ ', lnbo
0 0

PP box bo'x P(x), x p(x)
(9)

It is clear from Eq. (9) that P(p) determines the relation between a and A —,. The dimensionless quan-
tity a A—' is a function of the gauge group and its fermionic content and does not depend on the value
of the coupling in QCD.

In principle, the P function can be evaluated directly from QCD. However, this is not possible at the
moment. To find a formula for the P function that interpolates between the large-p [Eq. (5)] and the
small-p [Eq. (4)] limits, we turn to quarkonium physics which probes the intermediate distance scales.
Instead of determining the quarkonium potential and hence P(p) numerically from the quarkonium data, '
we find it more instructive to present a simple empirical formula for the P function which (i) satisfies
Eqs. (4) and (5), and (ii) provides an excellent fit to the @ and T data. As an illustration, let us con-
sider

1 1 z b 1
1 —exp — +~ —exp(- I p),P(p) p' - bop—

where I is a constant. " We note that P in Eq. (10)
has an essential singularity at p =0. Such a non-
analytic behavior is compatible with other investi-
gations in QCD." Equation (10) is shown in Fig.
1. 0—
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FIG. 1. The P functions: -P(p)/p as a function of p
for Eq. (4) where higher-order terms are neglected; Eq.
{10)with E =24; and Eq. {12)with f=76.

FIG. 2. The potential corresponding to Eq. (10) with
&~~=0.5 GeV. The dotted line represents the two-loop
asymptotic freedom modified" Coulomb potential; the
dashed line is the linear potential with &'=1.04 GeV
The vertical lines indicate the mean square radii of the
states.
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Using Eq. (6), we obtain p(t) and hence the
quarkonium potential. This is plotted in Fig. 2.
Equation (10) also gives (y~ = Euler's constant
= 0.5772)

Z b,lr.A-2=-lnb, b'2 y, +ln
b0 0

where b, = 9 and b, = 64 for QCD with three fla-
vors. [It turns out that the quark momenta in 0
and Y satisfy (p') &4yg, ', hence we expect that
only three flavors contribute to V(x)].

From deep-inelastic scattering analysis, "we
find A—~ 0.5 GeV. Using A—,= 0.5 GeV, we have
only one parameter" l'. We use the Y' —Y mass
difference to fix E while the quark masses are de-
termined by 0 and Y.' With l = 24, we obtain an
excellent fit, which is shown in Table I. This al-
so determines the asymptotic Regge slope to be
a'=1.0 GeV '. The leptonic widths given in the
table are obtained with the Van Royen-Weisskopf
formula. " If we naively introduce the QCD radi-
ative corrections" to the Van Royen-Weisskopf
formula, we find that the correction factor [1
—(16/Sm)a, ] is 0.65 for the T states and 0.44 for
the 4 states.

Let us discuss the empirical formula (10) for
the P function. (i) If we set b, =0, the resulting P
function will give the quarkonium potential that
has been suggested by a number of authors. "
(ii) If we choose a smaller A—,say A—=0.4
GeV, the fit is distinctly worse for any choice
of l. This is expected since, for small A, the
validity of the small-coupling expansion [Eq. (2)]
extends to smaller Q' and hence larger distances.
However, it is clear that just an "asymptotic-
freedom modified" Coulomb potential is not com-
patible with the C, T spectroscopic data. Hence,
we expect that for any sensible choice of the P

~1 (
1)' ~51'&,

( 1)

m~ = 1.48 Ge V

T
ma =4 88 GeV

1$

1P
2$

1D
2I'
3$

2D
4$

3.095*
(8.0)
3.52
3.69
(3.6)
3.81
3.96
4.11
(2.5)
4.19
4.47
(2.0)

9.460"
(1.7)
9.89

10.02*
(0.76)
10.14
10.25
10.35
(0.54)
10.43
10.62
(0.45)

function that satisfies Eq. (4), there is a lower
bound on A —,. Our investigation leads us to be-
lieve that A—,must be of the order of a few hun-
dred megaelectronvolts. (iii) On the other hand,
we can always find a functional form for the P
function which fits data and has a very large A.
This is because, for very large A, Eq. (2) is
valid only for very large Q' or extremely short
distances. As a consequence, Eq. (2) or Eq. (4)
imposes no constraint on the potential at the dis-
tance range which is sensitive to the 4, Y data.
Fortunately, deep-inelastic scattering data im-
plies" A —,& 0.5 GeV. (iv) Given A—& 0.5 GeV,
the +,& data are sensitive to the functional form
for the P function. As an illustration, we con-
sider (see Fig. 1)

(12)

TABLE I. The 4' and Y spectrum obtained from Eq.
(10) with I =24. The masses are given in gigaelectron-
volts. The leptonic widths under the masses in brackets
are given in kiloelectronvolts. They are obtained with
use of the Van Royen-Weisskopf formula. 4, &, and
&' masses are inputs (indicated by asterisks).

For any choice of f which satisfies A—& 0.5
GeV, this P function does not fit data as well as
Eq. (10). This implies that the data are very sen-
sitive to the P function. We expect that the cor-
rect P function will be numerically very close to
our formula (10), from which we obtain o'A —'
= 0.27, z' = 1.04 GeV ', and A—,= 0.508 GeV. The
uncertainty in A—,should be no more than 0.1
GeV.
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Transverse form factors have been extracted for the low-lying neutron hole (particle)
states of 'O~Pb from inelastic-electron-scattering data. A systematic, multipolarity-
and momentum-transfer-independent quenching of -55% in the transverse amplitude is
observed when compared with single-particle predictions for both electric and magnetic
transitions. The magnitude of the observed effect is not readily explained by our present
theoretical understanding of this nucleus.

PACS numbers: 25.30.Cq, 21.10.Ky, 21.10.Pc, 27.80.+w

The transverse form factors of the low-lying
single-particle (-hole) transitions in "'Pb have
been measured for the first time. Large devia-
tions from the predicted single-particle cross

sections have been observed which cannot easily
be accommodated within our present understand-
ing of this nucleus in terms of the simple shell
model.
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