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Band representations of space groups are defined and they are used for the symmetry
specification of bands in solids. While the symmetry of atomic orbitals is specified
around a single center, the band symmetry of a solid is defined with respect to a whole

lattice of centers.

PACS numbers: 71.10.+x

The concept of bands was first introduced by
Bloch?! and has since been widely used in solid-
state physics. However, until quite recently the
concept of a band as a whole entity was not util-
ized because most of the experiments were in-
volved with electronic states at the Fermi level
in metals and at the top and bottom of the va-
lence and conduction bands correspondingly in
semiconductors. In recent years with the applica-
tion of powerful sources of radiation® it became
possible to extract information about states rang-
ing over hundreds of electron volts and in such
experiments the data about a band as a whole
should become accessible. It is therefore of in-
terest to reconsider the band concept in a solid.

The usual approach in defining the concept of a
band in a solid is by specifying the symmetry of
the Bloch functions at each point k in the Brillouin
zone.® In a series of papers by Des Cloizeaux*
it was shown that a close connection exists be-
tween Bloch functions and symmetry-adapted lo-
calized orbitals. In this Letter a specification of
bands in solids is given based entirely on space-
group symmetry.

It is instructive to compare the symmetry of a
crystal with that of an atom. The atomic levels
are specified by the rotational symmetry around
one fixed center. In a crystal there is, as a rule,
more than one center of point-group symmetry.
Thus, in Figs. 1 and 2, I show examples of two
space groups, C;! and D', respectively.® In
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FIG. 1. Space group C;!. The circles denote inver-

sion centers.

these figures the symmetry centers are given in
the plane x-y. Inthe group C,;!, all the symmetry
centers are of the same kind and they contain the
inversion only. Two centers differing by a Bra-
vais-lattice vector are equivalent. For the group
D!, two kinds of centers are given in Fig., 2:
with symmetry D, and D,. From the point of
view of symmetry, crystals differ from atoms in
two aspects. Crystals have a number of point-
group centers while atoms have only one. This

is not a qualitative difference. A difference
which is of qualitative nature is that in a crystal
there is always a lattice of symmetry centers of
a given kind. Such a lattice is obtained by choos-
ing one center of given point symmetry and by
applying to it all the elements of the space group.?
One can therefore visualize a space group as con-
sisting of lattices of symmetry centers. Corre-
spondingly, in crystals the symmetry specifica-
tion of states should be defined with respect to

an infinite number of symmetry centers simul-
taneously.

While each Bloch function defines a single ener-
gy, a Wannier function reproduces energies be-
longing to a whole band.® This same idea holds
also for general localized orbitals and the restric-
tion to Wannier functions is unnecessary.”*® One
should therefore expect that, for the symmetry
specification of a band as a whole entity, local-
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FIG. 2. Space group D41. The squares denote centers

with point symmetry D,; the ovals, those with point
symmetry D,.
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ized orbitals are more suitable than Bloch func-
tions.

I shall define a band in a solid as a set of local-
ized orbitals which are invariant under all the
operations of the space group. Because of all
the translations, such a set will form an infinite-
dimensional representation of the space group.

If an orbital C(k,q) in the kg representation be-
longs to this set, then all the orbitals

exp(-ik*R,)C &, (1)

will also belong to it.® I shall therefore define a
band in a solid by an infinite-dimensional repre-
sentation of the space group on a basis of local-
ized orbitals. I shall call it a band representa-
tion. Band representations can be reducible or
irreducible depending on whether or not the ba-
sis can be split into invariant subbases. The ir-
reducible band representations serve as elemen-
tary building bricks in the symmetry definition of
bands in solids. The orbitals C(k, Q) used as
bases for band representations can, in principle,
be made orthogonal on different sites (Wannier
functions). However, this is, in general, unde-
sirable because orthogonality and localizability
are mutually exclusive properties.” It is conveni-
ent to define the band representation and its ba-
sis in the kq representation. The reason for this
is that in the latter the localized orbitals C(k, §)
are Bloch-like functions, e.g., they satisfy the
same boundary conditions as Bloch functions do,
and they can be given two meanings. When k and
q are the variables of the k4 representation, the
function C(k,q) is a localized orbital. However,
the same function C(k,q) for a fixed quasimomen-
tum Kk is a Bloch-like function in the » representa-
tion® (the concept Bloch-like is used to point out
that these functions have the same symmetry as
the Bloch functions). This dual meaning of the
orbitals in the k¢4 representation is very useful
in fully defining the symmetry of the Bloch func-
tions at each point in the Brillouin zone from the
knowledge of the corresponding band representa-
tion. It gives therefore the link between the band
definition adopted in this Letter and the com-
monly used definition which is based on the sym-
metry specification of Bloch functions for each k
vector separately.’**

Since pure translations multiply the orbitals by
phases [expression (1)] it is clear that the bases
of band representations contain a limited number
of orbitals

cl(l;’—q), CZ(E,H)’
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o G4, 7). (2)

When the space-group elements (aFt) (o a point-
group element and T a translation®) are applied to
them, we get

(alt)C (&, §) =20 Dyrl(alt), k]C,. (&, ), (3)

where D[(alt),k] is a k-dependent matrix. The
knowledge of the matrices in (3) for all (ait) de-
fines the symmetry properties of the orbitals

C (k,q). The operation of (aft) on a wave function
C(k,q) is as follows:

(alt)ok,§)=Cla™ &k, a g - 1). (4)

Band representations can be constructed in the
following way. Given a space group G, we find all
the groups of the quasicoordinate a, G,, inthe
Wigner-Seitz cell.’* To G, belong all those ele-
ments ('yla of the space group for which

(Vlaa:a""ﬁm’ (5)

where R,, is a vector of the Bravais lattice. A
full list of the groups G, is given in Ref. 5. Thus,
G, for all the points in Fig. 1 is the whole space
group C;*. In Fig. 2 the ¢ points labeled by the
squares have as their symmetry the space group
D,', while those labeled by the ovals have a sym-
metry group D, (containing all the translations)
which is a subgroup of D,!. The space group G
can be decomposed with respect to G, into cosets

G=G,+(0| )G+ * + (4] 3))G,, (6)

where (a,|3,),... , (o] &) are elements that do
not belong to G,. Given the decomposition (6), we
can generate the star for each vector §, which
contains the vectors q, (a,la,)d,... ,(as]a)q.
Thus the stars of all the q vectors in Fig. 1 con-
tain only { itself. I proceed similarly for the q
vectors labeled by the squares in Fig. 2. The
stars generated at and assigned to each oval in
Fig. 2 contain two vectors, q and C,*q, where C,*
is a rotation by 7/2 around the axis z.

The band representations of G can be induced
from the band representations of its subgroups
G,. An important rule can be established showing
that not all G, have to be considered for obtaining
all the irreducible band representations of G.
This rule says that if Gq, is a subgroup of G,,
and their common point-group elements as given
in relation (5) are identical, then G,, can be ex-
cluded and is irrelevant in the construction of the
band representations of G.

Given a group G,, its band representations can
be found in an entirely elementary way. If D(y)is
an irreducible representation of the point group
of G,, then the matrices exp(-iKk*R,)D(y) corre-
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sponding to (y|R,) define an irreducible band
representation of G,. In this way one finds all
the irreducible band representations of G, from
the irreducible representations of its point group.

Now let {C,(k, 9, C,(&,d,... ,C,[&, O} be a
band representation of G,. Then one can check
that the functions

Cs(K, @), (0] G) Colk, @,y o oo, (05| B) Cil, D, (7)

with s=1,... ,m, form a basis for an irreducible
band representation of the group G. By consider-
ing all the relevant G,, one can find in this way
all the irreducible band representations of G.

I shall demonstrate the construction of irreduc-
ible band representations on the groups C;* and
D,! the symmetry centers of which are given in
Figs. 1 and 2. The group C;! has eight nonequiva-
lent inversion centers (Ref. 5, page 78). It is
possible to write the irreducible band represen-
tations for all these centers in one formula. All
the centers in Fig. 1 have the symmetry G,=C;.
Their stars contain therefore only one vector.
Let I, be the inversion around one of the centers
4,. This inversion is connected with the inver-
sion I around the origin of the crystal in the fol-
lowing way:

I,=(e|§)(e| -q,) =] 2g,). (8)

It is clear that 23, has to be a pure translation.
Since 1, is represented by 1 [7,C(7 (K, q) == C\" (&,
a)] all the band representations corresponding to
different inversion centers ¢, are given by the
formula

17 (k, Q) =+ exp(-i K+ 24,)C 7 (k, ). (9)

The only other symmetry center for this group is
q=(x,y,z) which is invariant under translations
only. Let us show that this center does not lead
to additional band representations. The star for
this center is {q,7/q}. This means that the orbi-
tals C(k,q) (an orbital without any symmetry) and
IC(K, Q) will form together a basis for a band
representation of C;*. This representation is,
however, reducible. The reduction is achieved
by forming two linear combinations C(&, q) + IC(K,
. It is easy to check that they form bases for
irreducible band representations of C;* (even and
odd, respectively) which have already been listed
in Eq. (9). The latter gives therefore all the ir-
reducible band representations of the group C;.
Having in mind that the localized orbitals
C'" (K, Q) in the kg representation are also the
Bloch-like functions in the » representation we
can claim that Eq. (9) gives all the symmetry

types of bands for a solid with the symmetry C,.
Thus, the bands defined by ¢, =0 are given by the
relations IC(9 (K, q) =+ C(?(k, q) or equivalently
CO(-K, -9 == Cc9(k,q). Considering C'?(k,q)
as a Bloch-like function in the # representation,
this relation defines its symmetry at all the sym-
metry points of the Brillouin zone for which -k
=k +K,, (K, a vector of the reciprocal lattice).

But this is exactly what is needed for a symmetry
specification of the band.®> The same can be said
about all the other inversion centers g,.

The group D, has a variety of symmetry cen-
ters. For the points with symmetry G,=D,* (de-
noted by a square in Fig. 2) there is only one
vector in the star and it is very simple to find
the band representations for all these points
(there are four such inequivalent points; see Ref.
5, page 179). Formula (8) for the elements of D,
becomes

@, =(c|q)ale] - 4) =(al G, - og,). (10)

Let the localized orbitals C,'"""(k,q),... ,
C,{"V(k,q) form a basis for an irreducible rep-
resentation ! of D, with respect to the center g¢,.
Then from relations (10) it follows

acs(r'l)(E,*) =exp[-iar ¢ (E - a_lﬁ)]
X 25 Dgrd™Aa)Co Nk, @), (11)
s’=1

This relation is of the same kind as (9) with the
only difference that it can also contain a multidi-
mensional representation D{"*?), For each g, and
I relation (11) defines an irreducible band repre-
sentation of D41 and, correspondingly, all sym-
metry types of bands for the D, centers. As an
example let us consider the band symmetry de-
fined by q,=(4a, ia, 0) (see Fig. 2) and the two-
dimensional representation® of the point group D,.
Denote by § an element of the group of kK: G,
={k|k=k+K,}. I particular, for K=(1/a,n/a,
7/c), G,=D,*. When 8 is a rotation by 7 around
the x axis, the exponential in (11) will be equal
to —1, Similarly, one obtains the symmetry of
the Bloch-like functions at each point K of the
Brillouin zone. In this way formula (11) defines
the type of band symmetry for any D, center and
the representation of the point group D,.

For the centers with D, symmetry the star con-
tains two vectors. Thus, the vectors g, =(34,0,0)
and g, =(0,4a,0) form such a star (Fig. 2). With
respect to the group G,, the space group D, can
be decomposed as follows:

D=D,+ C,*D,. (12)
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The group G, equals D, (containing all the trans-
lations). The band representations of D, are giv-
en by formula (11), where D{"*? are now the
representations of the point group D,. According
to Ref. 5, there are two inequivalent points (points
f and e on page 179 of Ref. 5) with the symmetry
D,. The corresponding band representations of
D, can be constructed according to the rule given
in (7). It can be checked that by starting with the
D,- and D,-symmetry points we obtain all the ir-
reducible band representations of D,

In summary, this Letter gives for the first
time a symmetry specification of bands in solids
based entirely on band representations of space
groups. These are new representations of groups
which correspond to a band of energies rather
than to a single energy as in the case of usual
representations. While the symmetry of an ener -
gy level in an atom is specified with respect to a
single center, the symmetry of a band in a solid
is specified with respect to an infinite lattice of
centers. This is in full correspondence with the
concept of a band in a solid as derived from atom-

ic levels of atoms placed on a lattice. The lattice
of the symmetry centers is an invariant property
of the band and if the full information about a band
becomes accessible it should be possible to deter-
mine experimentally the position and the type of
the lattice for each band in a solid.
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Peculiar rodlike diffuse critical scattering above the type-I antiferromagnetic (AF/D
phase transition has been observed in the actinide compound UAs and demonstrates that
the transition is in the vicinity of a Lifshitz point. A mean-field theory is proposed based
on an anisotropic Hamiltonian and provides a reasonable description of the results.

PACS numbers: 75.40.Fa, 75.25.+z, 75.50.Ee, 64.60.Kw

Recently there has been considerable interest
in phase transitions associated with a so-called
Lifshitz point, i.e., a multicritical point separat-
ing a uniformly ordered phase, a modulated
phase, and a disordered phase.' In this Letter
we present evidence to show that this criterion
is almost satisfied for UAs near its antiferromag-
netic ordering temperature. The critical scatter-
ing in UAs is anisotropic, exhibits a maximum

1028

at an incommensurate point in reciprocal space,
and disappears when a superlattice peak appears
at the commensurate wave vector. We analyze
the critical behavior by developing a mean-field
treatment of a Hamiltonian that includes strong
cubic anisotropy.

The uranium monopnictides (all with the NaCl
crystal structure) provide examples of a family
of compounds with strong cubic anisotropy in the
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