
VOLUME 45) NUMBER 12 PHYSICAL REVIEW LETTERS 22 SEPTEMBER 1980

Microscopic Theory of the Phase Transformation and Lattice Dynamics of Si
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An ab iniHo calculation for the solid-solid phase transformation, static structural
properties, and the lattice dynamics of Si is presented. A density-functional pseudopo-
tential scheme is used with the atomic number as the only input. The detailed proper-
ties of the diamond to p-tin transition are accurately reproduced. The phonon frequen-
cies and mode-Gruneisen parameters at I' and X, along with the lattice constant, bulk
modulus, and cohesive energy, are calculated and found to be in excellent agreement with
experiment.

PACS numbers: 63.20.Dj, 61.50.Lt

It has been widely accepted that once the quan-
tum theory of solids is solved accurately, the
structural properties of solids can be fully pre-
dicted theoretically with only a knowledge of the
identities of the constituent elements. The struc-
tural properties included (i) the prediction of the
most stable crystal structure; (ii) the static prop-
erties such as the equilibrium lattice constant,
cohesive energy, and bulk modulus; (iii) the pre-
diction and description of the solid-solid phase
transformation; and (iv) the dynamic properties
such as phonon frequencies and mode-Gruneisen
parameters. These are long-standing and funda-
mental problems in solid-state physics and ma-
terial science; however, ab initio calculations
exist for only a few static properties (ii).

This Letter reports on a successful calculation
of structural properties [(i) to (iv)] for Si which
is used as a prototype material. The only input
information is the atomic number, but because it
is impossible to test an infinite number of crys-
tal structures, we only consider a subset of plau-
sible crystal structures consisting of the fcc,
bcc, hcp, diamond (cubic), hexagonal diamond,
and P-tin structures. Our theoretical results re-
ported in the following are, therefore, restricted
to this structural subset. To our knowledge, this
is the first successful ab initio microscopic cal-

culation of a solid-solid phase transformation and
of the lattice dynamical frequencies.

To achieve the high accuracy required for struc-
tural comparison, we use a frozen-core approxi-
mation (FCA). The FCA considers the nuclei
plus the core electrons as cores which are non-
responsive ("frozen" ) to the changes in their
chemical environment. This approximation makes
the energy calculations more precise since the
binding energy of the cores and the valence elec-
trons, as calculated within the FCA, is two or-
ders of magnitude smaller than the binding ener-
gy of the nuclei and all the electrons. In addi-
tion, the FCA has the computational advantage of
dealing with only the valence electrons. This is
compatible with the pseudopotential method' with-
in the density-functional (DF) formalism. '

To justify the use of the FCA for solids, the
effective pseudopotential must accurately simu-
late the interaction of the valence electrons with
the cores in the atomic limit. Several schemes
for obtaining pseudopotentials of this kind have
been developed. ' ' These ab initio pseudopoten-
tials are capable of reproducing excitation ener-
gies (within 10 Ry), valence eigenvalues (with-
in 10 ' Ry), and valence wave functions (within 1%
outside the core region) when compared with all-
electron DF calculations. We have chosen the Si

TABLE I. The volumes at the minimum structural energies (V1T)Ul, nor-
malized to measured free volume), the minimum energies (E~~), and
~E~~ (=—E~~ -E~~ " '"

) for the six plausible structures of Si.

Hexagonal
Diamond diamond P-tin hcp fcc

~m~
&min (Hy)
~Z . (eV)

1.012
-7.9086

0

1.015
-7.9074

0.016

0.773 0.723 0.826
-7.8888 -7.8681 -7.8260
0.27 0.55 1.12

0.824
-7.8171
1.25
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FIG. 1. The diamond, hexagonal diamond, and P-tin,
hcp, bcc, and fcc structural energies (in units of Ry/
atom) as a function of the atomic volume [normalized
to the measured free volume (Hef. 16)l for Si. The
dashed line is the common tangent of the energy curves
for the diamond and the P-tin structures.

potential of Hamann, Schluter, and Chiang' which
gives accurate results compared with all-elec-
tron calculations for various atomic configura-
tions over a 2-Ry range within the DF formalism.
This helps to ensure the transferability of the
pseudopotential from atom to solid and from struc-
ture to structure. This potential has an addition-
al important feature of being relatively weak and,
thus, it is easier to use with plane-wave expan-
sions of the wave functions. We use the Wigner
interpolation formula' for the exchange and cor-
relation energy, Z„,[p], in both the atomic and
crystal calculation.

The pseudopotential calculation is carried to
self-consistency, ' and the structural energy,
E„,„„is then calculated. ' The number of spe-
cial k points' used in the iteration and the number
of plane waves used in the wave function expan-
sion are increased until E„,„,converges to with-
in the desired precision. In this way, E„,„,'s
are calculated for five to ten lattice constants for
each structure in the structural subset. Applying
a nonlinear least-squares fit for E„,„, to Murnag-
han's" equation of state, we obtain the minimum
structural energy per atom (E . ) and the corre-
sponding atomic volume (V,,) for each structure
as shown in Table I and Fig. 1. The diamond
structure is found to be the stablest, and the
zero-pressure static properties are given in Ta-
ble II. The cohesive energy was obtained by sub-
tracting the pseudoatomic energy including the
spin-polarized correction" and the zero-point
vibrational energy from E„,„,. The results are
as good or better than previous calculations for
static properties (using either pseudopotentials
fitted to band structure" ' or ab initio pseudo-
potentials" ")when compared to experiment. ""

This calculation also shows that Si will trans-
form" to the P-tin structure under high pressure
(Table I and Fig. l). With increasing hydrostatic
pressure, the crystal will follow the path 1-2
—3-4 as shown in Fig. 1. The phase transition
occurs along the path 2- 3 which is the common
tangent of the E„,„,(V) curves for the diamond
and p-tin structures. This region represents a
mixture of these two phases. The tangent points
determine the transition volumes, V,"and V, ~,
and the slope is the transition pressure, P, . The
calculated V," 8 and P, are shown in Table III to-
gether with the measured values. ""The agree-
ment for the volumes is excellent. The transi-
tion pressure has a larger uncertainty in our cal-
culation because of the incomplete convergence
of the calculated structural energies. The exper-

TABLE II. Comparison of calculated and measured static properties
of silicon.

Lattice
constant

(A)

Crystal
energy

(Ry)

Cohesive
energy

(eV)

Bulk
modulus
(Mbar)

Calculation
Experiment
Percent difference

5.451
5.429
0.4%

-7.909
-7.91S
-0.17o

4.67
4 63
0.9/o

0.98
0.S9
-1%

Ref. 17. Ref. 18. R,ef. 19 (at 77 K).
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TABLE III. Comparison of the calculated and meas-
ured volumes (V&

' ~) of the diamond and P-tin phases
at the transition pressure, their ratios (V& 8/V& ), and
the transition pressure itself. The volumes are nor-
malized to the measured zero-pressure volume.

TABLE IV. Comparison of the calculated phonon
frequencies (f„~,) and the mode-Gruneisen parameters
(VLa]c) with experiment' (exp| ippzpt) The deviations
from f~»t 's are also presented A. ll frequencies are
in units of 10tr Hz.

Vd v, ' Vg /Vg I g (kbar) LTO(l ) TA(X) TO(X) LOA(X)

Calculation
Experimenta
Deviation

0.928
0.918
1.1%

Refs. 21 and 22.

0.718
0.710
1.1%

0.774
0.773
0.1%

99
125

-20%

fcaic
afe xpt

Percent difference
Vcal c

b
~e xpt

15.16
15.53
-2.4%
0.92
0.98

4 45
4.49

-0.9%
-1.50
-1.4

13.48
13.90
-3.0%
1.34
1.5

12.16
13.32
-1.3%
0.92
0.9

imental data were taken at room temperature.
Using the phase diagrams shown in Ref. 23, we
estimate the transition pressure to change by
s + 15% from room temperature to 0 K. If we al-
so consider possible superstress effects, the
agreement of the calculated transition pressure
with experiment is satisfactory.

In Fig. 1, the hexagonal structure lies above
the cubic structure before the diamond-P-tin
transformation. This result is consistent with
the experimental observations on the metastabil-
ity of Si in the hexagonal diamond structure. "

For the lattice dynamics, we have investigated
the phonon frequencies at I' and X where the po-
larizations are determined using group-theoretic
methods. E,~„,'s are calculated for the ideal and
the phonon-distorted lattices. The phonon fre-
quencies can then be obtained by calculating the
change in E„,„,. The calculated and measured""
results for the phonon frequencies and mode-
Gruneisen parameters (y =- —d Into/d InV) are tabu-
lated in Table IV. We have also tested the depen-
dence of the results on the functional form" of
E„,[p] and find a maximum change of less than

To illustrate the need for an accurate pseudo-
potential, we note that our ab initio results are
more accurate than those of Wendel and Martin, "
who used an empirically fitted pseudopotential
and an ad hoc linear repulsive force parameter.
This indicates that pseudopotentials fitted to ex-
citation spectra do not necessarily guarantee ac-
curate structural properties and that self-consis-
tency is important for accurate results.

The DF approach was developed to deal with
ground-state properties but not with the electron-
ic excitation spectra. The calculated band gap of
0.5 eV, which is consistent with the all-electron
crystal calculation, "has no direct connection
within the DF formalism with the measured exci-

'Ref. 25 (measured at 296 K).
Ref. 22; /exp& of LOA(X) is estimated from the

thermal expansion coefficient.

tation gap of 1.17 eV. This discrepancy implies
that we need a modified or entirely new formal-
ism to study the electronic excitational spectra.

A few observations can be made in light of this
calculation. Since no input information beyond
the atomic number (and the consideration of only
a subset of crystal structures) were used to ob-
tain excellent structural properties for Si, this
result can be regarded as an important confirma-
tion of the DF approach for studying structural
properties. The scheme is not limited to Si. Our
preliminary results for Ge appear to be as accu-
rate as those for Si. Furthermore, the success-
es strongly suggest that this approach can also be
applied to the study of defects in solids, structur-
al properties of surfaces, and more complex
phase transitions.
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