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The interesting new physics occurs at the ¹3
level where the following eight multiplets are ex-
pected: [56, 3 ], [56, 1 ], [70, 3 ], [V0, 2 ],
[VO, 1 ], [70, 1 ], [20, 3 ], [20, 1 ]. Turning on
the perturbation splits these multiplets and intro-
duces a new parameter 5, specific to the N = 3
levels. For example, for the [70, 3 ] we obtain"

x[70, s ]=z,+so-~~+-,'5.
However, the important feature to note here j.s
that the masses of three of the N=3 multiplets
are independent of 6; their masses axe entirely
determined by the N=2 level Parameters:

E[70, 2 ]=ED+30 ——, 6,
@[56,3-]=a,+sn -&~,
@[56,1-]=z, + sn -g ~.

Reasonable phenomenology for the N= 0, 1, and
2 levels was obtained' with Eo 1150 MeV and 4
=0 =440 MeV. Using these values, we predict
the mass spectrum of Fig. 2. The mean mass of
the [56, 1 ] is around 1985 MeV close to the
mass of the 4 ~, at 1930+20 MeV. Given the
simplicity of the model and our neglect of the
hyperfine interactions, this is startlingly good
agreement. We conclude that, in contrast to
previous claims, the 6 m, (1930) does not repre-
sent unambiguous evidence for new degrees of
freedom inside baryons.
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Chromodynamics with n flavors of massless quarks is invariant under chiral UQ) CUQ).
It is shown that in the limit of a large number of colors, under reasonable assumptions,
this symmetry group must spontaneously break down to diagonal U(n).
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In nature, the gauge group of chromodynamics
is SU(3), and guarks are color triplets. Never-
theless, it is useful to consider generalizations
in which the gauge group is SU(N) and quarks
are color N-uplets. There are many observed
properties of meson dynamics (e.g. , Zweig's

rule) that can be argued to be exact in the large-
N limit; it is tempting to believe that this indi-
cates that large-N chromodynamics is in some
sense a goad approximation to the real world. '

In this note we study large-N chromodynamics
with yz massless quark N-uplets. This theory is
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where i and j are flavor indices, the brackets
indicate vacuum expectation value, and the sum
over (suppressed) color indices is implied. We
stress that this is just an example; for our pur-
poses some nonlocal or smeared-out version of
this will do as mell. All we need are the chiral
transformation properties of M,

(u, v): M-uMv, u, v&U(n). (2)

It is easy to show that by a transformation of this
form we can always make M real, diagonal, and
nonnegative. The squares of the diagonal entries
are the eigenvalues of M~M (or, equivalently,
of MMt). Thus V can depend only on these eigen-
values, and the pattern of chiral symmetry break-

invariant' under the chiral symmetry group U(n)
S U(n). This group contains many inequivalent
subgroups; thus group theory allows many pos-
sible patterns of spontaneous symmetry break-
down. We shall argue here that in the large-N
limit, under reasonable assumptions, the pat-
tern of chiral symmetry breakdown is uniquely
fixed: Chiral U(n) U(n) necessarily breaks
down to diagonal U(n). Hearteningly, this is the
pattern observed in nature.

Our assumptions are as follows: (1) We assume
that the large-N limit exists, that chromodynam-
ics has an asymptotic expansion in powers of
1/N. (2) We assume that chromodynamics yields
confinement for arbitrarily large N. (3) We as-
sume that the breakdown of chiral symmetry is
characterized by a nonzero value of some order
parameter which is bilinear in the quark fields
and which transforms according to the repre-
sentation (n, , n, *)p (n*,n) of the chiral group.
(4) We assume that the ground states of the theo-
ry are found by minimizing some effective po-
tential, V, an invariant function of the order
parameter, constructed in the standard way by
summing (an infinite number of) connected Feyn-
man graphs. (5) We assume that in the large N-
limit, the effective potential does not display
accidental degeneracy, that any of its minima
can be obtained from any other by the action of
the chiral group.

Assumptions (1), (2), (4), and (5) are more or
less standard. Assumption (3), though, requires
comment, because it restricts the pattern of sym-
metry breakdown even before we invoke large-N
dynamics. Let us label the order parameter by
a (not necessarily Hermitian) n&& n matrix, M.
For example, the simplest candidate for M is

down is determined by the pattern of eigenvalues
at the minimum of V. For example, if all the
eigenvalues vanish at the minimum, there is no
symmetry breakdown; if they are all equal but
nonzero, the symmetry breaks down to diagonal
U(n); if they are all unequal and nonzero, it
breaks down to U(1)", etc. Note that under our
assumption, breakdown beyond U(1)" is impos-
sible. If we had assumed two order parameters,
JI/I and I', or if we had assumed different chiral
transformation properties for the order param-
eter, further breakdown would have been allowed.

This concludes our introductory discussion.
The remainder of this note is the proof of the
announced r esult.

If we expand V in powers of M and ~~, we
will encounter terms like Tr(MMt)", Tr(MMt)"
xTr(MMt)', etc. Because traces of quark op-
etators arise in Feynman graphs from sums over
quark loops, the terms of the first kind come
from graphs with one quark loop, those of the
second kind from graphs with two quark loops,
etc. However, it is known' that in the large-N
limit, connected graphs with L quark loops are
O(N' L). Thus, the dominant graphs are those
with only one quark loop, and, to leading order
in 1/N,

V =N TrF(MM ), (3)

where F is some N-independent function. If we
denote the eigenvalues of MM~ by%&, i = &, ...,n,
then

V = Qg NF(X) ). (4)

(5)

where 3 is an g& pz Hermitian matrix, and let

Since the eigenvalues are independent variables,
to minimize this sum is to minimize each term.
Each eigenvalue must be at the minimum of E, and
thus the eigenvalues are either all zero (no sym-
metry breakdown) or all equal and nonzero [break-
down to U(n)] .

We shall now eliminate the first alternative.
We shall apply a method of analysis recently de-
vised by 't Hooft, ' based on the Adler-Bell- Jac-
kiw anomaly. The simplicity of the large-+
theory makes the application particularly clean;
there is no need of the supplementary assump-
tions required in the examples considered by
't Hooft.

Let us consider a chiral current
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us define the three-current Green's function by

» (j„(x)j„(V)jg(0)&, (6)

where z is —(p+ q). I is symmetric under si-
multaneous permutations of (p, q, r) and ( p, v, A.).
The anomaly equation" states that

(7)

We will choose A such that TrA. ' is not zero.
Equation (7) implies that F cannot be analytic

at p = q=r = 0. Proof: If I' is analytic, it has
a Taylor expansion, and the right-hand side of
Eq. (7) must come from a first-order term in
this expansion. If we neglect the permutation
symmetry of I', there are two independent first-
order pseudotensors, e„„„,p' and e„„~,q'. How-
ever, when we symmetrize these, each becomes

z (P+q+ &)
It is known that in leading order in I/N, the

only singularities in Green's functions made of
strings of quark bilinears are poles. ' For a
three-bilinear Green's function, like I', these
poles are at values of p', q, and/or r equal
to the masses of the particles made by applying
the individual bilinears to the vacuum. Because
I' is not analytic at p =

q = t. = 0, j& must create
at least one massless particle when applied to
the vacuum. If we were dealing with massive
particles, a vector current could create either
vector or scalar particles. For massless par-
ticles, though, I orentz invariance forbids the
creation of vector particles; only scalar parti-
cles are allowed. ' But for a conserved current
like j&, this is the Goldstone alternative: The
current creates a massless scalar particle from
the vacuum if and only if the associated symme-
try suffers spontaneous breakdown.

Added comments. —(1) Our reasoning can be ex-
tended to theories in which the quarks transform
according to the fundamental representation of
color SO(N) tor Sp(N) j. These representations
are equivalent to their conjugates, and so quark
and antiquark together transform like a vector
under chiral U(2n), while the analog of M trans-
forms like a symmetric tensor. A trivial rerun
of our arguments then implies that, in the large-
1V limit, chiral U(2n) breaks down to O(2n).

(2) If we abandon assumptions (3) to (5), the
part of our argument based on the anomaly equa-
tion survives, and leads to a weaker result, but
one that is still nontrivial: In the large-N limit,
the chiral group must break down to an anomaly-
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free subgroup. In particular, this implies that
there must be so~e chiral symmetry breakdown.

(3) If we consider variant theories in which the
quarks transform like a rank-two tensor under
the color group, graphs with a single quark loop
no longer dominate. Thus assumptions (3) to (5)
are useless, and the only conclusion we can draw
is that of the preceding comment.

(4) Regrettably, in no case do our arguments
give any insight at all into the mechanism of sym-
metry breakdown.

Thus the first of our two alternatives, no sym-
metry breakdown at all, is excluded, and only
the second, breakdown to diagonal U(n), remains.
This completes the argument.
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The little group of a null vector, 4, is isomorphic to
the two-dimensional Euclidean group. Under this group,
the single helicity state of a scalar particle transforms
according to the trivial representation, while the two
helicity states of a vector particle each transform ac-
cording to nontrivial one-dimensional representations.
On the other hand, of the four components of the current,
only the one aligned with & transforms according to a
one-dimensional representation, the trivial representa-
tion.


