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Mobility Tensor of the Electron Bubble in Superfluid 3He-A
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This paper reports calculation of the mobility tensor of negative ious, in He-A for
temperatures close to T~ in terms of normal-state properties from an exact solution
for the anisotropic quasiparticle-rigid-ion elastic scattering amplitude in the Ander-
son-Brinkman-Morel state.
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Ionic motion provides a sensitive probe of the
elementary excitation spectra of quantum liquids
at low temperatures. Recently we showed' that
the rapid mobility increase of negative ions in
'He-B just below T, is due to a novel scattering
phenomenon. ' Here we evaluate the mobility of
negative ions in 'He-A where the important new
feature is the anisotropy of the spectrum of ele-
mentary excitations, which leads to the observed
tensor structure for the mobility. '

The striking constancy of the normal-state mo-
bility throughout the Fermi-liquid regime' is ex-
plained by the large size of the ion, a cavity of
radius R = 10- 20 A enclosing an electron. Since
an ion constantly interacts with many quasipar-
ticles, its motion is diffusive and essentially re-
coilless. '~ Positive ions, which are smaller,
cannot at low temperatures be treated as classi-
cal nonrecoiling particles, and consequently the

theory of their mobility is not so simple.
Just below T, the scattering of superfluid quasi-

particles from the ion remains practically elastic.
Hence at low drift velocities collision processes
which change the number of superfluid excita-
tions cannot occur and the mobility is only limit-
ed by the ion's scattering from 'He quasiparti-
cles, whose spectrum in'He-A is given by E '

P=)~'+ l&(p) I', where $&= v(Fp p)Fi-s the normal-
state energy measured from the 'He chemical po-
tential, vF and pF are the 'He Fermi velocity and
momtneum, and L(p) = 4(T) sin8 e' ~1 is the gap
matrix for quasiparticles in the direction p =p/p
relative to the l vector. Since the gap is equal
for both spin projections, spin can be suppressed
in what follows for brevity.

Because of the anisotropy of 'He-A, the ion
mobility is a tensor. Its principal components
are easily shown to be given (in units where h = 1;
l is along z axis) by'
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Here p. » (p~) is the mobility parallel (perpendicular) to l, e is the charge of an electron, n(E) =(expPE
+1) ' with P = (k,T) ' is the Fermi function, and tz~~(E&) is the amplitude for scattering a superfluid
quasiparticle at energy Ez from momentum p to p'.

It is useful to express the mobilities in the form

Bn
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where n, is the number density of 'He. Angular brackets here denote averages of the parallel and per-
pendicular momentum transfer cross sections over the Fermi surface. ' These may be expressed with
help of the differential cross section

do -, - m* E
dg iP P & 2~ [Ea )g(P )!2]u2 & P'P~l ~[Ex (~(P)!2]i/2 ~

f- -'(E)
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where gyes* denotes the 'He effective mass. The
total cross section equals

o'"(p,E) = Idn(p') do(p', p', E)/dQ'.

If one ignored the coherent nature of the super-
fluid excitations by replacing the differential
cross section by a constant, one would obtain the
formulas derived by Bowley. ' Bromley' takes
energy-independent Ansatze for the differential
cross section, while Soda' suggests calculating
it by performing a Bogoliubov transformation on
the normal-state interaction.

Here we calculate the quasiparticle-ion cross
section in 'He-A, which we use to evaluate the
ion mobility tensor. To obtain the cross section
we work out the branch-averaged squared transi-
tion amplitude

&I t-, -, (E)l'&

I&+p (E)ITp p(E)l@p(E))l'.
final

branches

The scattering states, 4'-(E), depend on energy
and momentum and are spinors in particle-hole
space. In the presence of the divergent density
of states for superfluid excitations it is vital to
account for the repeated scattering of 'He quasi-
particles from an ion. This is described by the
full scattering T matrix, which we write as the
Nambu matrix

! T is calculated from the Lippmann-Schwinger
equation T(E) = V+ VG(E)T (E), where V is the ion
potential and the matrix 6 (E) is the superfluid
propagator. Since modifications of T occur for
E =6, we need it only for initial and final quasi-
particle momenta equal to the Fermi momentum.
Expressing V in terms of the normal-state T ma-
trix, T", and propagator, t"", we thus find

T(E)=T"+T"[~(E)-~"]T(E). (6)

This equation determines the T matrix in the su-
perfluid in terms of the normal-state interaction,
for which we have employed a partial-wave ex-
pansion in Legendre polynomials. The ion is as-
sumed rigid, with a potential that of a hard sphere
of radius R. Fermi-liquid effects are essential-
ly subsumed in the choice of potential. Order-
parameter distortions close to the ion may be
neglected. '

The matrix equation (6) amounts to coupled
equations which connect tg g' with t g.&

and tg

with t ~. ~4. These are amplitudes for an initial
normal-state quasiparticle p and quasihole -p to
scatter to final quasiparticle p' and quasihole
-p' states. We have solved these equations us-
ing expansions in spherical harmonics. In con-
trast with 'He-B, where full rotational symme-
try could be exploited, the present case is only
axially symmetric and thus only I, the projec-
tion of angular momentum onto the anisotropy ax-
is, is a good quantum number. On the other hand,
all orbital momenta l' and l are possible. The
solution may be represented as'

Y, .*(p )t, , „'(E)Y,.(p)

block diagonalization in angular momentum space
and need half as large matrices.

In contrast with the B-phase work, ' extensive
numerical computations are required in the pres-
ent calculation. Here we want to describe some
interesting features of these': All initial and fi-
nal quasiparticle directions are allowed for E &4,
but when E &6 these are restricted to angles

4
o'P ( ) N(0) ZZ

' ' (Y), ,(-p')t, , , '(E)Y, (p)

where N(0) is the density of states in normal 'He.
Because of the large radius of the scattering po-
tential many partial waves must be included
above. In numerical calculations we kept sixteen
partial waves and thus for m =0 the coefficients
t, ,

' are 16X 16 matrices. We therefore find
it advantageous to employ parity properties of
the scattering process by introducing symme-
trized scattering amplitudes. ' We thus achieve

999



VOLUME 44, NUMBER 15 PHYSICAL REVIEW LETTERS 14 APRIL 1980

where E & b. (p). The intermediate-state propaga-
tor diverges for the threshold angle 0, = arcsin(E/
6) and in contrast to the B phase, virtual transi-
tions, which give rise to an off-shell contribution
to the propagator, have an important effect on the
scattering amplitude, and also give rise to quasi-
bound levels with energies below 4.

Examples of the computed differential cross
section are illustrated in Fig. 1 for p and p' in
the same plane as l. The cross section displays
strong energy dependence and anisotropy. For
E approaching 6 from above, the forward-scat-
tering peak is broadened, while less scattering
occurs into the directions of the maximum gap.
Note that for E &4 the differential cross section
vanishes for 80&0&& I9p.

The angular-averaged total cross section is re-
markably constant for energies E &h. Below b,

it displays several resonances. The averaged
transport cross sections, however, are severely
reduced for energies approaching the gap from
above. When E &6 we find pronounced peaks in
the parallel-momentum-transfer cross section
at the quasiparticle resonances, while the per-
pendicular one rapidly tends to zero. '

Inserting the transport cross sections into Eqs.
(2) we find the results which have been compared
with those of Ref. 6 in Fig. 2. The latter yields
for (1 —p„/p, i, i) the slopes 0.42 and 0.47, re-
spectively, as functions of 4/T for T, —T «T,.
To within numerical accuracy we find (1 —g„/p)

=0.56'/T for bo]h pi, and gi. The small anisot-
ropy we predict near T, is in agreement with the
data of Roach, Ketterson, and Roach. ' At lower
temperatures we find a much larger difference
between p, „and p. i than in Ref. 6, again in agree-
ment with experiment. "

In Fig. 3 we compare our calculation for (pi,
+p, i)/2 at 28.4 bars with that of Ref. 6 and experi-
ments" around this pressure. These were car-
ried out in an external magnetic field applied per-
pendicular to the electric field, such that the
average (pii+pi)/2 was measured.

To take into account strong-coupling effects,
we assume that 6' scales as the specific heat dis-
continuity, and employ

where (hC/C„)AsM = 1.29,' and take (~C/C„)~„,
as 1.82.""Our results agree well with the
most extensive set of available data, that of
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FIG. 1. Polar plot of the differential "He-ion cross
section in the Anderson-Brinkman-Morel {ABM) state
as a function of p', with Axed P at 45' to f and P, p',
and 8 coplanar. The radial scale is logarithmic in
units of ~R2 and an ion radius R = 8.45/pq was used.

FIG. 2. The caluclated ion mobility tensor in 'He-A.

relative to the constant normal-state mobility, pN, as
a function of &(T)/T. Dashed curves are the approxi-
mation of Ref. 6.
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FIG. 3. The computed mobility (thick line) of negative ions in He-4 as a function of T/T, , compared with data
from Refs. 1 {squares and circles) and Ref. 3 {triangles). Dashed line is Bowley's approximation {Ref. 6).

Ahonen et al. ' While the agreement with experi-
ment is better than that for the B phase, we do
not regard the difference as significant. The rea-
son for the large discrepancy between the data of
Refs. 1 and 3 at similar pressures is unclear,
but may be due to differences in the temperature
scale. The result of Bowley's approximation'
does not differ much from ours in this compari-
son of averages. These calculations provide
further stimulus to perform experiments to meas-
ure the anisotropy of the A-phase mobility, and
also to use ions as a probe of the parameters of
liquid 'He.
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