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Self-Healing of Confined Plasmas with Finite Pressure
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At finite ratios of the kinetic plasma pressure to the magnetic pressure, the magnetic
confinement configurations of axisymmetric plasma columns tend to acquire character-
istics that hinder the onset of instabilities driven by the combined effects of magnetic
curvature and pressure gradient. A simple analytical dispersion r'elation that contains
the main physical factors affecting an important class of these modes is given.

PACS numbers: 52.80.+ r

The purpose of this Letter is to discuss the
maximum value of the ratio P of the plasma ki-
netic pressure to the pressure associated with
the confining magnetic field that can be reached
without inducing loss of confinement. This ratio
is important in order to assess the main char-
acteristics, such as transport properties and
rates of radiation emission, of a given magnetic
confinement configuration, as well as the type
of fusion reactor that can be developed out of it.
Here we limit most of our attention to the ideal
magnetohydrodynamic (MHD) approximation and
notice that when P increases toward finite values,
instabilities driven by the combined effects of the
magnetic field curvature and the pressure gra-
dient can be expected to develop. ' An essential
feature of the ideal MHD model is the strong in-
teraction between the developing plasma insta-
bility and its magnetic confinement configuration.
As P is increased, the configuration of the plas-
ma isobaric surfaces also changes, and, since
the plasma motion is tied to that of the magnetic
lines, this will have a dual effect2: Not only will
it increase the instability driving pressure gra-
dient, but it also will enhance the stabilizing mag-
netic tension in that region of unfavorable mag-
netic curvature where the relevant modes de-
velop.

In the earliest stability analysis of these modes,
the considered equilibrium models neglected the
modification of the confinement configuration
that takes place as P evolves and becomes finite.
In particular, only linear terms in the plasma

pressure gradient were retained in the relevant
normal mode equation, and rather pessimistic
upper limits on P for stable configurations were
obtained. However, as we shall show in this
Letter, important nonlinear terms must also be
retained; as was first demonstrated for simpli-
fied equilibrium configurations, these terms can
lead to production of a "second stability re-
gion. "'4 This circumstance is illustrated by the
following dispersion relation that we have de-
rived from a consistent description of the ideal
MHD equilibrium configuration in the vicinity of
the magnetic axis:

Here we have employed familiar notations except
for the dimensionless parameters

s(g) =d 1 nq(P) /dlnr(g),

G(g) = —8', q,B, 'r(g)dP (g)/dg

that measure the magnetic shear and the plasma
pressure gradient. For t"2& 1.2s, corresponding
to the first stability region in the (G, s) plane,
the pressure gradient is not strong enough to
overcome the stable shear-Alfven oscillations.
For G'& 6.4s the tendency of the plasma to ex-
pand is hindered by the increased magnetic ten-
sion, and the considered confinement configura-
tions are again stable.

In the limit of high toroidal number, incom-
pressible plasma displacements have been shown
to satisfy the following normal-mode equation":

1'2($ + /2)'r (g) = B 2R2 j & —J ~B 2R 2(1 + /2)
ae ' ae

+GB~Roqor ~Bo ~[—RK„+RK~Z] T(8).

We have adopted as coordinates the toroidal angle 0, the polar angle 8 around the magnetic axis, and
the radial flux function r(() = (2qo (/B o)~ 2, where Bo and qo are the magnetic field and the inverse ro-
tational transform at the magnetic axis. The eigenfunction & is related4' to the component of the dis-
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placement normal to the magnetic surface; the dimensionless Jacobian J is defined by d t/' =JADE dr
d8 dP; the inverse rotational transform is q = (2m) 'fq, d8 and the quantity & is

Z=R'B qo(BBor) '[&/Br+!Vr! 'V8 ~ Vr&/88] J q, d8'. (3)

where d($, 8) represents the polar distance from
the magnetic axis on a meridian plane, P»
=- —2mB,'q, B, 'dp(0) /dg is a local measure of
the poloidal P, &( IX I& 1) determines the ellip-
ticity of the flux surfaces close to the magnetic
axis, and I'2 and I'3 are rather involved functions
of the poloidal variable that are given by Coppi,
Ferreira, and Hamos~'; triangularity and other
free shape parameters are set equal to zero.

This equilibrium can be used to obtain pertur-
bative solution of Eq. (2). The eigensolution is
accordingly expanded in powers of G: Y(l,8)
= Y,(&,8) +GY, (&,8) +. .., and we require that it
be a periodic function of ~. The terms of order
unit in 2 ield the e uation

where A, =1+ l'(I+X') + 2X(l'cos28 —& sin28)
and Co = (1+X cos28) 'Ao are positive definite
functions. Therefore the only acceptable solution
is I', =0, Y, = Y,(l). Subsequently we can solve
for the periodic dependences in &» Y» and &,.
To order G', the right-hand side of Eq. (2) van-
ishes after integration over the periodic variable

Since f(1+ &')d8 is 1, it follows that the
leading term in the expansion of 1' is of order
G, and we can write

12 = r2g '(G/2)'+ O(G') =I"'2s'+O(G').

y ()y
By averaging the terms of order G~ over one

8
Ao(l, 8) ' ' = I','Co(l, 8)Yo(l, 8), (5) period, we obtain the eigenvalue equation for IBY(l 8 ~ ~ 2

and Y,(l):

I'(I, + I')Y (I) = —(1+1') ' + [A(g)(l+ &') '-B(g)]Y,(&), (6)

In addition, I = iruR, q, /vA, and the normal and geodesic components of the magnetic curvature are
represented by &„and w~, respectively. The Alfven velocity &AD is referred to the field at the magnetic
axis: v„o' = Bo'/(4m p). All other symbols have their usual meanings. In Eq. (2) the variable 8 should
be regarded as a transformed one, ranging from —~ to + ~ (see Refs. 7-9).

The linear stability of MHD modes described by Eq. (2) in finite-P configurations can be investigated
by studying the properties of that equation in the vicinity of the magnetic axis, where analytical solu-
tions of the finite-P MHD equilibrium are known. We prescribe the poloidal flux function g to vanish
at the magnetic axis; thus both r(p) and G(g) tend to zero as p' ' and it is convenient to expand Eq. (2)
in powers of G. The equilibrium configuration will be assumed to be marginally stable against local-
ized interchanges to lowest order (q, =1+ ellipticity corrections), "so that the terms associated with
these modes in the MHD energy principle do not overwhelm the ballooning-mode terms we are inter-
ested in, as we approach the magnetic axis. The coefficients in Eq. (2) are periodic functions of 8 ex-
cept for the secular term s8 in Z. Around the magnetic axis, the shear s tends to zero like g, and we
can introduce the finite parameter g =-lim& OG /4s. Since the variable 8 extends to infinity, solving
our differential equation when s- 0 requires a multiple scale analysis: We split the dependence on ~

into a "periodic" 0 and a "stretched" variable l =—s0.
To write down explicit representations for the coefficient functions in Eq. (2) we use the following

equilibrium solution, suitably expanded in powers of G:

d($, 8) =r(g)((l+ X cos28) '~' —2 '(I+A. cos28) 2 [I+(I+X)/(4P»)] cos8G(g)

~.(8)G'(C). ~,(8)G'(C) . ..], (4)

where

A( g) = 4g —( —,')g'+ z[(~)g' —7g],

B(g) =(~)g'- &(7g'-g)/4.

(7)

(8)

These expressions (7), (8) are only correct to
first order in X and in the limit p~ » l. In addi-
tion to the parameter g, the equilibrium function

E,(8) in Eq. (4) involves another parameter [pro-

! portional to d'p(0)/djP] that has nevertheless dis-
appeared from Eq. (6). Thus, to lowest order in

G and for P~ » 1, the stability limits and the
growth rates depend only on the parameter g and
the ellipticity A..

Equation (6) can be regarded as a "distilled"
version of the original ballooning mode equation
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(2), which contains the essential information
about how the equilibrium configuration affects
the onset of the instability. Thanks to its sim-
plicity, it also provides a useful basis to evaluate
the mode growth rate. First of all there is a
simple analytical solution at marginal stability
(I'=0), V0(l) =(I+f2) ~, where the exponent y
and the marginally stable value of g are the solu-
tions of the algebraic equations

y = (-,')(1+ [1+4B(g) ] '~')= [A(g)/4]'~'. (9)

These admit two solutions,

gq = 0.30+0.54K, yq = (T2-)'/'+ 0.02K;

gII 1 60~ 3 46~, riI 0 80+ 0 02

confirming the existence of two points of margin-
al stability. Notice that positive values of X (i.e. ,
vertically elongated ma, gnetic surfaces) shift
both marginal points towards higher values of g,
showing a tendency to make the first stability
region wider and the second one narrower. With-
in the range of values of A. for which our linear
perturbation computations are reliable, the dis-
criminant 1+4B(g) remains positive. Therefore
the considered configurations are stable against
localized interchanges to order G', an expected
result since we are dealing with high poloidal P.

In order to estimate the positive growth rates
which are found for g& & g&g&&, we can make use
of the quadratic form

r2j df(I+f2) ~r, ~'=- j df(I+I') ~dT, /df~'+ gf df((I +I')-'[4-(-')2g]-( )2gj l&0I'. (10)

For the sake of simplicity we have omitted the contributions of ellipticity. This equation clearly shows
the stabilizing g' terms which imply that the. growth rate F cannot increase indefinitely with the pres-
sure gradient parameter G, and will eventually fall back to zero at a second point of marginal stabil-
ity. Given the value of the exponent y, characterizing the eigenfunction Y0(g=g» I), we see that the
growth rate must be depressed around the first marginal point g~. As a matter of fact, the approxi-
mate expression

r2 ~g2(g-1 10)2(g 1 +)

fits the r (g) curve obtained by numerical integration of Eq. (6), within errors of less than 5/0 relative
to the maximum value of I, for g~&g&g». From this we derive the approximate dispersion relation,
Eq. (1). The latter can be generalized to include the effects of small ellipticity as follows:

= (11~G'/q0R0) ( +) ( I + 3.2X) [s/G' —( ~~) (I —1.BX)]'[s/G2 —(~22) (1 —2.2A) ].
Considering the dispersion relation, Eq. (1),

near the points of marginal stability, we have to
take into account the effects of finite ion gyro-
radius. " Thus, in Eq. (1), u2 should be replaced
by u(u —10~, ), where 0 ~, =cn0(en) 'dp, /dq, p, is
the ion pressure, n is the particle density, and
n the toroidal mode number. Then instability is
found only for r2&(01~;q0R0)2(2m~) ', correspond-
ing to

r'& GR0(p;ke)2(dp;/dg)[161~;(dp/dy)] ',
where ke is the poloidal wave number, p,. is the
ion gyrora, dius, and v~, =(—dlnp, . /dv) ' is the ion
pressure gradient scale distance.

A second aspect is that for a small positive
I", the relevant asymptotic solution is Yo l

xexp(- rf), and this is a,cceptable to the extent
that

(k„p,)'-(k,p, l )'-(k,p, )'/r2-(k, p, )'s'/r2 &1.

Finally we notice that the boundary between the
unstable region and the second stability region
may be representative of the pressure radial dis-
tribution for a quasiaxisymmetric magnetic con-

I

figuration that results from the excitation of high-
n' ballooning modes when reaching the first in-
stability boundary. In fact, when this boundary
is reached, during a heating process, the plasma
pressure tends to overcome the stiffness of the
magnetic field lines and leads to a growth of the
local value of G by steepening the pressure grad-
ient. At the same time, the characteristic length
of variation of the confining field along the poloid-
al direction tends to shorten and the features of
the configurations that lie in the second stability
region tend to be produced. It is possible that the
combination of the physical effects we have de-
scribed is responsible for the lack of experimen-
tal observation of ballooning modes in the experi-
ments that appear to have exceeded the first sta-
bility boundary.

In this connection we notice that a recent num-
erical analysis" has shown that an axisymmetric
configuration in which ideal MHD ballooning
modes become unstable tends to evolve into a new,
nonaxisymmetric equilibrium configuration char-
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acterized by relatively sharp current density pro-
files. These profiles are in fact similar to those
found for axisymmetric equilibrium configura-
tions driven to relatively high values of P through
magnetic-flux conservation. Then a potential
limitation to high-P confinement can arise from
those modes which produce magnetic reconnec-
tion and are driven unstable by the plasma cur-
rent-density gradient. However we observe that,
on the basis of the linear theories developed so
far, these modes are considerably more difficult
to excite in collisionless regimes than in regimes
where the effects of collisional electrical resis-
tivity are important. Thus the collisionless plas-
mas that have to be produced before reaching
thermonuclear conditions should sustain without
disruption current-density gradients and values
of the rotational transform on axis to = 1/qo well
above the levels achieved in present-day experi-
ments, and therefore favor the realization of
finite-P confinement as well.

We also note that the stabilizing effects de-
scribed in the present Letter depend on the con-
straint that the plasma motion is tied to that of
the magnetic field lines. Qn the other hand, the
same constraint does not allow the plasma sta-
bility to benefit from the magnetic well that is
dug at finite values of P, because this well is
carried along with the plasma itself. Conversely,
the presence of a magnetic well is expected to
exert a favorable influence on modes that can be
found outside the ideal MHD approximation.
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