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Quantum-Mechanical Fluctuations of the Resonance-Radiation Force
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The influence on atomic motion of quantum-mechanical fluctuations of the resonance-
radiation force is investigated theoretically. Fluctuations due to both induced and spon-
taneous absorption-emission processes give rise to diffusion of atomic momentum, here
described by a Fokker- Planck equation. It is shown that quantum-mechanical fluctua-
tions of the radiation force place a lower bound on the temperature achievable by radia-
tion cooling, inhibit cooling in a strong standing wave, and lead to finite, often short,
confinement times for atoms in radiation traps.

PACS numbers: 32.80.Kf, 32.90.+a, 33.90.+h

R=P/M,

P = psE(R, f)/8c, (2)

The importance of quantum-mechanical fluctua-
tions of the radiation force in determining the
motion of an atom in an electromagnetic wave
was first emphasized by Einstein in 1917.'
this early work, Einstein showed that fluctuations
due to both spontaneous and induced absorption-
emission processes were necessary to account
for the Maxwellian distribution of atomic velocity
in thermal equilibrium. In recent years, a num-
ber of authors have proposed methods for trap-
ping, "deflecting, "and cooling"' atoms by
use of the resonant light forces in tunable laser
radiation. Although the fluctuations due to ran-
dom recoils accompanying spontaneous emission
(spontaneous fluctuations) have often been con-
sidered in these proposals, the fluctuations as-
sociated with induced absorption-emission proc-
esses (induced fluctuations) have usually been
ignored. Only recently has it been suggested that
induced fluctuations might be of some importance
in cooling and trapping experiments. '

The purpose of this Letter is to point out that
induced fluctuations can strongly influence atomic
motion in resonant radiation and, in particular,
that induced fluctuations place a lower bound on
the temperature achievable by radiation cooling
and lead to finite, often short, confinement times
for atoms in radiation traps.

In strong coherent radiation, induced atomic
processes are correctly described by interaction
with a classical field. The Heisenberg equations
for one-dimensional motion of an atom of mass
M in a classically prescribed linearly polarized
electromagnetic wave E(x, t) = eE(x, t), in the di-
pole approximation, are

where JL(, is the component of the electric dipole
moment operator in direction e. If the atomic
wave packet is small compared to the distance
over which BE(x, t)/'x changes by a significant
amount, the operator R in (2) may be replaced
by its expectation value R =(R), since any ma-
trix element involving BE(R, ~)/Bx is only neg-
ligibly affected by this replacement when the
wave packet is small.

I consider the motion of a two-level atom with
internal states

~
1) and ~2) of energy E, and E„

respectively, in a monochromatic field E(x, t)
= gx) cos[0(x)+rut] with a.rbitrary a.mplitude (x)
and phase 8(x). In terms of atomic operators S
=

~
1) (2~ and S =

~

2) (1~, the dipole operator
takes the form P, = p(S+~t), where p, =(1~ /~2)
is the transition dipole moment, taken here to be
real. In the Heisenberg picture, operators S and
S~ are rapidly varying functions of time. It is
more convenient to work with slowly varying op-
erators @and v defined by relations S= oexp[ —i(0
+cut)] and St= o exp[i(0+~t)], respectively.
Upon substituting the above expressions for E(x, t)
and P, into (2), and discarding inessential terms
that oscillate at twice the optical frequency (rotat-
ing wave approximation), the equation for atomic
momentum becomes

8 ~Q ~0-P= ——0 +0—o
2 Bg Bg

where v, =a+&', v, =i(v —cr"), and 0= p. S/his
the on-resonance Rabi flopping frequency of the
two-level atom.

It is well known that the expectation values of op-
erators o„o„and v, = 6 0 —o(x', namely, u=(v, ),
v=(o, ), and ~=(v, ), are the components of the
Bloch vector; and if the atom experiences relaxa-
tion due to spontaneous emission, these compo-

976 1980 The American Physical Society



VOLUME 44, NUMBER 15 PHYSICAL REVIEW LETTERS 14 APRIL 1980

nents satisfy the optical Bloch equations'

u = (s + 8 )v ——,'Au,

v=-(6+8)u+ Qm ——'Av,

w = -Qv —A(u + 1),

(4)

where b, = u —
&uo is the detuning frequency [ao

= (E2 —E,)/|2] and A is the Einstein spontaneous-
emission coefficient. The expectation value of
(3) is the mean radiation force acting on the atom,

and

lim (~)/At = F
A ~0

(7)

significant influence on atomic motion.
The motion of an atom under the influence of a

fluctuating force is described by the Fokker-
Planck equation. If in time At the force gives
rise to a mean increment of momentum (~) and
a mean square fluctuation of momentum about the
mean increment ((hP —(~))'), if the limits

aBQ BB &F= u+—Q —v i.2 Bx Bx j ' (5) lim ((~—( aP) )') /at = 2D
+~0

(8)

Equations (4) and (5) were recently derived with
a slightly different approach, "and were applied
to a number of problems of current interest.

Equation (3) indicates that the force P= 2'R[(BQ/

Bx)o, +Q(B8/Bx)o, ] should be regarded as an
operator. With use of the fact that operators 0,
and 0, satisfy the a,nticommutation relations o; o,
+ o, o,. =25,, , it is readily shown that the mean
square force has the form

t2' (BQ12 BB12
&F')=—

i

—
i

+Q' —
i4 (Bx t Bxj

which is independent of the state of the atom. If
we compare (6) with (5) and note that u and v are
constrained only by the relation u'+ v' ~1, it is
easy to see that the rms fluctuation of the radia-
tion force, ((F') —F')' ', can exceed the mean
force E. This is a clear indication that quantum
fluctuations of the radiation force will have a

exist, and if all other moments per unit time,
e.g. , ((bx —(M))(AP —(6P)))/bt, vanish in this
limit, the Fokker-Planck equation takes the
form"

Bf P Bf B B'—= —————(Ff) + (Df)
~t M ~x BP BP'

where f(x, P) is the distribution function in phase
space. "

The limit (7) is clearly the mean radiation force
of Eq. (5). To calculate D we proceed as follows.
With F defined as the right-hand side of (3), the
increment of momentum is

~= f F(s)ds,

the mean increment is

(m) = J, F(s) ds,

((m —(m))')= f' f,
'

sd, sd, [( (Fs,)E( s)) —F(s,)F(s,)]. (10)

The correlation time of fluctuations of the force E is essentially the correlation time of fluctuations of
the dipole moment p, , which is known to be on the order of the natural lifetime w„= 1/A. I consider the
case in which the amplitude Q and phase 6 of the applied field (at the moving atom) are nearly constant
over a natural lifetime. In this case, the field-dependent factors in the force (3) can be taken outside
of the integrals in (10), and for r t= t —to somewhat larger than a correlation time, Eq. (10) yields

2D =, =j ds[(F (0)F (s) ) —F(0)F(s) ]

~Q Be)2 oo en ae
U (s)ds + Q —

~

V2(s)ds + Q ——J [V~(s) + U, (s) J ds
4 8x ) ~X @C

where

U, (t ) = ( a,(0)b, (t ) ) —u(0) u(t ),
v, (t) = (o,(0)o,(t)) —u(o)v(t),

U, (t) = ( ~,(0)o,(t)) —v(O)u(t),

V,(t ) —(o2(0) o,(t)) —v(0) v(t),

(12)

I have set t, =0 for simplicity, and the subscript
on Dz indicates that this is the contribution from
induced fluctuations.

The theory of dipole correlation functions, such
as (12), is by now fairly standard, having been
developed in connection with the problem of reso-
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nance fluorescence by Mollow" and others. "'"
According to this theory, if we introduce two
additional correlation functions

W, (t) = (o,(O) o,(t)) —M(O)w(t),

W,(t) = ((x,(0)a,(t)) —v(0)w(t),
(13)

U; =(6+ 8) V) —~AU;,

V, = -(b + 6) U;+ QW; —2A V;,

IVY= -QV; -AR'
(14)

then each of the sets of correlation functions U;
V;, W, (i = 1, 2) satisfy homogeneous Bloch
equations

The remainder of the calculation is given in out-
line. First, it is clear from (11) that only the
real parts of U, , V, , and W,- are significant. The
real parts are even functions of t, and so the
integrals in (ll) are replaced by twice the inte-
grals from 0 to ~. Next, integrating Eqs. (14)
from 0 to ~, we obtain a set of algebraic equa-
tions for f, U;ds, f V, ds, and f W,. ds involv-
ing initial conditions U,(0), V,(0), and W, (0). The
initial conditions are obtained from (12) and (13)
by use of 0,. 0,. = 6,, +ic,,„o„and the steady-state
solution of the Bloch equations (4). Finally, the
algebraic equations for U;ds, etc. , are solved,
and the results are used in (11) to obtain

~
(A[(46,'+A')' —86, Q']+ 2A 'Q'(3A'+ 6A2Q'+ 4Q4)]

a' sQ12

-Q —[166.,Q (2A'+ Q )]+Q'i —
i
[2Q'A(126, , ' —A +2Q') +A(4b, , '+A')2]Ki &O, , t'&8'1'

&x Bx

x(4~ '+A2+ 2Q')-' (15)

where 6,= 6+ 0 is an effective detuning. In a
weak field (Q-o), (15) becomes

52A

(4~, '+

and in a. strong field (Q-~)

(16)

(17)

where the second term in (17) is usually negligi-
ble when BQ/Bx eO.

The term containing D in the Fokker-Planck
equation represents diffusion of momentum. In
addition to the coefficient of induced diffusion D~,
there is a well-known contribution D~ to the total
diffusion coefficient D = D, + D s, resulting from
random recoils associated with spontaneous emis-
sion. If the atom's dipole moment is transverse
to the x direction, it is readily shown that the co-
efficient of spontaneous diffusion is

D = ~A(S(u, /c)'P, = —,', A(5(u, /c)'(w+ 1)

=A(huoQ )'/5c'(4A, '+A'+ 2Q'),

where P, = —,'(w+1) is the probability that the upper
atomic level is occupied, and I have taken the
steady-state value of u to obtain the final form.
In a strong field L''~ saturates to the value D~
= —,', A(a(u, /c) '.

I now consider a few simple examples to illus-
trate the above theory. In a strong resonant
traveling wave E(x, t) = Scos(kx —~,t), the satu-
rated radiation force" is E= —,'Akk (k = ~,/c); the

E =M ' fi (D+PF")f dx' dP (18)

for the rate of change of the mean translational

coefficient of induced diffusion, Eq. (17), is Dz
= —,'A(Rk)', the spontaneous coefficient is D~
= —,', A(Sk)'; and the total momentum-diffusion co-
efficient D= 7A(Rk)'/20 is 3.5 times that which
might have been expected on the basis of spon-
taneous recoils alone.

In a strong standing wave E(x, t) = 2ho coskx
xcos&ut (Q=2Q, coskx, Q, = pS, /8, 0=0), the di-
pole force acting on a slowly moving atom" is
E= (-Kb, BQ'/Bx)/(4b, '+A2+ 2Q'), the induced diffu-
sion coefficient, Eq. (17), is DI 25'(BQ/sx)'——/A
-Q, '(Rk)'/A, and Ds is negligible compared to D, .
On resonance (b, = 0) the dipole force vanishes
and atomic motion is dominated by induced mo-
mentum diffusion. In a standing wave, induced
diffusion results from a splitting of the atomic
trajectory after each spontaneous transition to
the ground state, and is closely related to the
optical Stern-Gerlach effect. ""

The cooling or heating of an atomic vapor by
resonant radiation is calculated as follows. Gen-
erally the radiation force consists of a part I'
= —&V(x)/Bx derivable from a potential and a part
I' " not derivable from a potential. Multiplying
the Fokker-planck equation, (9), by P'/2M+ V(x),
integrating over phase space, and performing
some integrations by parts (assuming f=0 at ~x

~

= ~ and
~
P

~

= ~), we obtain the relation
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energy E= Jj(P'/M+V)fdxdp of the atom. For
example, in a weak (Q «A) standing wave tuned
below resonance by the amount b, = -~A, the total
diffusion coefficient is D=7Q, '(Sk)'/10A, the
radiation damping force, "for small atomic ve-
locity, is E"= -(2QD'kk'/A')u, and (18) states
that the energy E dissipates until (D+&E")„=0
or —,'M(v')„=7'/40. For A = 10' s ' this corre-
sponds to a temperature T=10 K. However, as
the intensity increases, D increases without
bound, because of induced diffusion, while the
strength of the dissipative force I" is certainly
bounded by 2Ahk. Therefore induced fluctuations
inhibit cooling in a strong standing wave.

Finally, consider radiation trapping of atoms
by the dipole force in a strong field (Q»A) of
amplitude Q(x) = Qo exp(-x'/so, ), e.g. , transverse
trapping in a Gaussian laser beam. The potential
energy of the dipole force, "V = —,'k~1.n(1+ Q'/2A'),
assumes its minimum value V~ 0 28fLQp for
4 = -0.35Qp. Since no dissipative force acts on
the atom, (18) states that E = D/M a,nd (17) yields
the estimate D = Dz + Dz = —,'o R~Q02/A wo'+ —,OA(5k)'
for the average D in the well. A trapped atom
gains energy from fluctuations and escapes from
the well in a time of order

at = -V /E = 2.8RQ, M/(Ah'k'+ k'Q, '/Aw, ') .

For a sodium atom in a Gaussian beam of radius
M p 10 p,m and power 50 mW, tuned to the 3 'Sy/2

-3'&,g2 transition, the confinement time is At
= 10 4 s. This is about two orders of magnitude
less than the value obtained if only spontaneous
fluctuations are considered.

The above examples indicate that quantum-
mechanical fluctuations of the resonance-radia-
tion force will be an important consideration in
the design of experiments to trap or cool atoms
and molecules.
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