ERRATA

MAGNETIC FIELD GENERATION BY DETONA-TION WAVES. Michael J. Frankel and Edward T. Toton [Phys. Rev. Lett. 43, 1814 (1979)].

Equation (2) should read

$$\frac{c^2}{4\pi} \frac{\partial}{\partial x} \left(\frac{1}{\sigma(x)} \frac{\partial B}{\partial x} \right) - \frac{\partial}{\partial x} \left[V(x) B \right]$$
$$= \frac{ck_{\rm B}}{eN_e} \left(\frac{\partial N_e}{\partial x} \frac{\partial T}{\partial z} - \frac{\partial N_e}{\partial z} \frac{\partial T}{\partial x} \right), \qquad (2)$$

and Eq. (5) should be written

$$S(x) = \frac{ck_{\rm B}}{eN_e} \left(\frac{\partial N_e}{\partial x} \frac{\partial T}{\partial z} - \frac{\partial N_e}{\partial z} \frac{\partial T}{\partial x} \right), \tag{5}$$

where derivatives with respect to y in the source term have been replaced by z derivatives, in conformity with the geometry of Fig. 1. The authors thank Dr. Frank Zerilli for pointing this

out.

MECHANISM FOR THE DIFFERENCE IN LIFE-TIMES OF CHARGED AND NEUTRAL D MES-ONS. Myron Bander, D. Silverman, and A. Soni [Phys. Rev. Lett. 44, 7 (1980)].

With the normalization for f_D given in Eqs. (6) and (7) our formulas for the decay rate [Eqs. (8) and (9)] are too large by a factor of 2 whereas the numerical value of $(f_D/m_u)^2$, in Eq. (12), is too small by a factor of 2. The complete set of corrections can be accomplished by replacing f_D/m_u (or f_F/m_s) by $f_D/\sqrt{2} m_u$ (or $f_F/\sqrt{2} m_s$) in Eqs. (8) - (14).

We are grateful to Bob Cahn, Yung Kang, and Mahiko Suzuki for discussions and correspondence in this regard.

NARROW Σ -HYPERNUCLEAR STATES. A. Gal and C. B. Dover [Phys. Rev. Lett. 44, 379 (1980)].

Tables I and II should be recast as follows for clarity:

TABLE I. Number n_c^{\pm} of 1p nucleons for the coherent excitation, $(1p)_N \rightarrow (1p)_{\Sigma}$, of Σ -hypernuclear $\frac{3}{2}$ states in (K^-, π^{\pm}) reactions, respectively, at 0° on ⁷Li and ⁹Be for $p_K = 720$ MeV/c. The conversion width Γ relative to the nuclear-matter estimate Γ_{nm} is also shown.

Target nucleus	$\frac{A}{\Sigma}Z$ structure	(I_N, I)	n _c -	n_c +	Γ/Γ_{nm}
$^{7}\mathrm{Li}$	$\left(\{(5/9)^{1/2} S[2] + (4/9)^{1/2} D[2]\} \otimes {}^{2}p_{\Sigma}\right)_{2b}$	(0,1)	3/2	0	0.9
	(1)	(1,0)	1/6	0	2.7
		(1,1)	0	0	2.0
		(1,2)	1/3	1	0.7
⁹ Be	$\left(\{(8/15)^{1/2} {}^{1}S[4] - (7/15)^{1/2} {}^{1}D[4]\} \otimes {}^{2}p_{\Sigma}\right)_{2_{\mathcal{P}_{3/2}}} a$	(0,1)	5/4	0	0.8
	$\left(\left\{(2/3)^{1/2} (2S_{N}+1)P[3,1]+(1/3)^{1/2} (2S_{N}+1)D[3,1]\right\} \otimes {}^{2}p_{\Sigma}\right)_{{}^{2}p_{3/2}}^{b}$	(0,1)	3/4	0	1.2
	,	(1,0)	1/3 ^c	0	1.9 ^d 2.0 ^e
		(1,1)	0	0	1.6 ^d 1.3 ^e
		(1,2)	2/3 ^c	2	1.0^{d} 0.7^{e}

^a Lower peak. ^bUpper peak; with $S_N = 1$ for $I_N = 0$ and $S_N = 0$, 1 for $^{d}S_{N}=0.$ $I_N = 1.$

^cDistributed according to $(2S_N + 1)$ for $S_N = 0, 1$.

 $eS_N = 1.$

TABLE II. Number n_c^{\pm} of 1p nucleons involved in the coherent excitation of Σ -hypernuclear 0⁺ states in (K^-, π^{\pm}) reactions, respectively, at 0° on ¹⁶O for p_K = 720 MeV/c, and conversion width ratio Γ/Γ_{nm} . We show two representative cases, corresponding to weak or strong Σ spin-orbit coupling.

${}^{A}_{\Sigma}Z$ structure	Ι	n_c -	n_c +	Γ/Γ_{nm}
$(_{N}p_{3/2}^{-1}\otimes _{\Sigma}p_{3/2})_{0}^{+}$	$\frac{1/2}{3/2}$	4/3 8/3	0 4	$\begin{array}{c} 1.3\\ 0.6\end{array}$
$(_{N}p_{3/2}^{-1}\otimes _{\Sigma}p_{1/2})_{0}^{+}$	$\frac{1}{2}$ $\frac{3}{2}$	$\frac{2}{3}$ $\frac{4}{3}$	$\begin{array}{c} 0 \\ 2 \end{array}$	$1.2 \\ 0.8$
¹ <i>S</i> ₀	$\frac{1}{2}{3}{2}$	$\frac{2}{4}$	0 6	$\begin{array}{c} 1.4 \\ 0.3 \end{array}$
${}^{3}\!P_{0}$	$\frac{1}{2}{3}{2}$	0 0	0 0	$1.1\\1.1$

DYNAMIC CONFINEMENT FROM VELOCITY-DEPENDENT INTERACTIONS. M. King and F. Rohrlich [Phys. Rev. Lett. 44, 621 (1980)].

On page 622 in the top equation of the second column $(\vec{\xi} - \vec{\pi})^2$ should read $(\vec{\xi} \cdot \vec{\pi})^2$. On p. 624, Eq. (9b) $l - \frac{5}{2}$ should read $l + \frac{5}{2}$. In the equation preceding (9b) the argument of u_l should be $(\beta\xi)^2$ which corresponds to $t = (\beta\xi)^2$. In the last line of the left column on p. 624 "has been earlier" should read "has been noted earlier."

PHASE TRANSITIONS AND MAGNETIC MONO-POLE PRODUCTION IN THE VERY EARLY UNI-VERSE. Alan H. Guth and S.-H. H. Tye [Phys. Rev. Lett. 44, 631 (1980)].

In the first paragraph, the time corresponding to $T = 10^{17}$ GeV should be $t \sim 10^{-41}$ sec. Equation (2) should read

$$p(t) = \exp\left[-\frac{4\pi}{3}\int_{0}^{t} dt_{1}R^{3}(t_{1})\lambda(t_{1})\left(\int_{t_{1}}^{t} dt_{2}\frac{v}{R(t_{2})}\right)^{3}\right].$$

Footnote 12 should read the following: If the density of monopoles exceeds this bound, they would noticeably influence the cosmological deceleration parameter. See Ref. 7.