ERRATA

MAGNETIC FIELD GENERATION BY DETONATION WAVES. Michael J. Frankel and Edward T. Toton [Phys. Rev. Lett. 43, 1814 (1979)].

Equation (2) should read

$$\frac{c^2}{4\pi} \frac{\partial}{\partial x} \left(\frac{1}{\sigma(x)} \frac{\partial B}{\partial x} \right) - \frac{\partial}{\partial x} \left[V(x) B \right]
= \frac{ck_B}{eN_e} \left(\frac{\partial N_e}{\partial x} \frac{\partial T}{\partial z} - \frac{\partial N_e}{\partial z} \frac{\partial T}{\partial x} \right),$$
(2)

and Eq. (5) should be written

$$S(x) = \frac{ck_B}{eN_e} \left(\frac{\partial N_e}{\partial x} \frac{\partial T}{\partial z} - \frac{\partial N_e}{\partial z} \frac{\partial T}{\partial x} \right), \tag{5}$$

where derivatives with respect to y in the source term have been replaced by z derivatives, in conformity with the geometry of Fig. 1. The authors thank Dr. Frank Zerilli for pointing this

out.

MECHANISM FOR THE DIFFERENCE IN LIFE-TIMES OF CHARGED AND NEUTRAL D MESONS. Myron Bander, D. Silverman, and A. Soni [Phys. Rev. Lett. 44, 7 (1980)].

With the normalization for f_D given in Eqs. (6) and (7) our formulas for the decay rate [Eqs. (8) and (9)] are too large by a factor of 2 whereas the numerical value of $(f_D/m_u)^2$, in Eq. (12), is too small by a factor of 2. The complete set of corrections can be accomplished by replacing f_D/m_u (or f_F/m_s) by $f_D/\sqrt{2}$ m_u (or $f_F/\sqrt{2}$ m_s) in Eqs. (8)-(14).

We are grateful to Bob Cahn, Yung Kang, and Mahiko Suzuki for discussions and correspondence in this regard.

NARROW Σ -HYPERNUCLEAR STATES. A. Gal and C. B. Dover [Phys. Rev. Lett. <u>44</u>, 379 (1980)]. Tables I and II should be recast as follows for clarity:

TABLE I. Number n_c^{\pm} of 1p nucleons for the coherent excitation, $(1p)_N \rightarrow (1p)_{\Sigma}$, of Σ -hypernuclear $\frac{3}{2}$ states in (K^-, π^{\pm}) reactions, respectively, at 0° on 7 Li and 9 Be for $p_K = 720$ MeV/c. The conversion width Γ relative to the nuclear-matter estimate $\Gamma_{\rm nm}$ is also shown.

arget nucleus	$rac{A}{\Sigma}\!Z$ structure	(I_N, I)	n_c -	n _c +	$\Gamma/\Gamma_{\!$
⁷ Li	$(\{(5/9)^{1/2} S[2] + (4/9)^{1/2} D[2]\} \otimes {}^{2}p_{\Sigma})_{2p_{3/2}}$	(0, 1)	3/2	0	0.9
	7-7-3/2	(1,0)	1/6	0	2.7
		(1, 1)	0	0	2.0
		(1, 2)	1/3	1	0.7
⁹ Be	$\left(\left\{(8/15)^{1/2} {}^{1}S[4] - (7/15)^{1/2} {}^{1}D[4]\right\} \otimes {}^{2}p_{\Sigma}\right)_{2_{p_{3}/2}}{}^{a}$	(0, 1)	5/4	0	0.8
	$\left(\left\{(2/3)^{1/2} {}^{(2S_{N}+1)} P[3,1] + (1/3)^{1/2} {}^{(2S_{N}+1)} D[3,1]\right\} \otimes {}^{2} p_{\Sigma}\right)_{{}^{2} p_{3/2}}{}^{b}$	(0, 1)	3/4	0	1.2
	,	(1,0)	1/3 ^c	0	$egin{array}{l} 1.9^{ ext{d}} \ 2.0^{ ext{e}} \end{array}$
		(1,1)	0	0	$egin{array}{l} egin{array}{l} egin{array}$
		(1,2)	2/3 ^c	2	$egin{array}{l} 1.0^{ ext{d}} \ 0.7^{ ext{e}} \end{array}$

a Lower peak.

^bUpper peak; with $S_N = 1$ for $I_N = 0$ and $S_N = 0$, 1 for $I_N = 1$

^cDistributed according to $(2S_N + 1)$ for $S_N = 0$, 1.

 $^{{}^{\}mathrm{d}}S_N=0$.

 $^{{}^{}e}S_{N} = 1.$