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Phase Diagrams for Staged Intercalation Compounds
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The phase diagram for a staged intercalation compound is calculated in mean-field
theory. At low temperatures, the dependence of the staging on the chemical potential
is related to the interlayer interactions responsible for staging. At high temperatures,
a dilute stage-1 phase is predicted for all values of the chemical potential. The stage-
2-stage-1 transition is second order for temperatures greater than the tricritical tem-
perature. The predicted phase diagrams are related to recent experiments.

PACS numbers: Gl. .60.+m, 64.60.Cn, 64.70.Kb

One of the most interesting, but poorly under-
stood phenomena observed in intercalation com-
pounds is the existence of pure stage ordering—a periodic sequence of n host layers and one
intercalant layer. Although the best examples of
staging have been observed in graphite intercala-
tion compounds, "' where high stages (n ™10) have
been prepared, certain intercalation compounds
of the transition-metal dichalcogenides have been
shown to stage as well. ' In this paper, the sim-
plest possible, physically reasonable Hamiltonian
that shows staging is treated to yield phase dia-
grams as functions of chemical potential, temper-
ature, and concentration. The mean-f ield theory
of staging is preceded by an exact, numerical
study at zero temperature of a one-dimensional
Ising model with long-range interactions in an ex-
ternal field (chemical potential). Although there
is also current interest in magnetic systems with
one-dimensional modulated structures, ' ' the
present study focuses on the application to inter-
calation compounds. The main new results of
this work are the predictions of a limiting tem-
perature T above which only stage 1 is stable
and of a second-order phase transition from stage
2 to stage 1 in a limited region of the phase dia-
gram.

The model Hamiltonian used in the present cal-
culations consists of attractive in-plane interac-
tions and repulsive interplanar interactions be-
tween intercalants. A mean-f ield approximation
is then used to treat the in-plane interactions, so
that the Hamiltonian becomes, after the in-plane
averaging,

II = —p Q ) (r) —2 Uo ~ ) o'( + 2 ~;;V); o ) o'; .2

In Eq. (1) i is a layer index and U, & 0 and V, &
& 0

are, respectively, the averaged in-plane and in-
terplanar interaction energies; p is the chemical
potential while the (v,j are the average layer oc-

cupancies of the intercalant sites, which may take
continuous values between 0 and 1. Since this
work deals with the case of weak interlayer repul-
sion in comparison with the in-plane attraction,
the assumption of a homogeneous concentration of
intercalant within the plane is justified within
mean-field theory. In addition, since stage order-
ing exists in a wide variety of graphite intercala-
tion compounds with different forms of in-plane
order'" " (commensurable/incommensurable with
host) or disorder' " (la.ttice-gas-like, liquidlike),
the exact nature of the in-plane structure does
not seem to be crucial. Thus, the intercalant
planes are characterized by their (temperature-
dependent) average densities only. The interpla-
nar repulsion is modeled as a power law V&&

=2V~z,~(, where (z,~( is the distance between
planes i and j, measured in units of the c-axis
lattice spacing. Although a detailed analysis of
the microscopic origin of the interplanar repul-
sive interactions is beyond the scope of this pa-
per, it may be noted that the screening of the in-
tercalant layer in graphite intercalation com-
pounds follows a power law" (and not an exponen-
tial one). Thus, the electrostatic repulsions of
the intercalant layers, which have donated their
electrons to the host, could be the origin of the
long-range interaction responsible for stage or-
dering. " Moreover, as shown below, the repul-
sive power-law interaction does produce staging,
so it is useful to study the Hamiltonian (1) as a
model system with V and n treated as phenorneno-
logical parameters.

At T =0, the layer occupancies fo, j were as-
sumed to be periodic functions' and a numerical
calculation was used to find the configuration
which minimized the total energy for each value
of p, . For computational convenience, a cutoff Z

was introduced in V&,. so that the maximum perio-
dicity investigated was z (z =15 for the T =0 cal-
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ap (n) =n~g(n+I)+g(n —I) —2g(n)~, (2)

where g(n) =g~, V~ ~,~„. For the power law in--

teraction considered here, Eq. (2) agrees with
the numerical results of Table I for n =4 where
the nonpure stages are negligible for n & 2. Thus,
the experimentally determined, low temperature,
range of stability as a function of stage yields di-
rectly the stage dependence of the interlayer in-

culation). The results of this calculation are
shown in Table I where the ranges of stability,
b, P(n), are listed. Here, n, which is the inverse
of the average concentration, takes on integer
values for pu~e stage ordering. The range of sta-
bility is the range of p values over which a given
phase is stable and p —= (p +2U, /V, where V=V/(a)
and $(o.') =+~, P for the cutoff z- ~. In terms
of the variable p, we have n ' =0 for p & 0 and p7

=1 for p™&1.As shown in Table I, more and
more of the phase diagram at T =0 is dominated
by the pure stages for increasing n a large num-
ber of high-order commensurate nonpure-stage
(7f nonintegral) configurations"' "are obtained at
T =0. On the other hand, for n =4 the range of
stability of the nonpure stages is at least an order
of magnitude less than that of the pure stagest
The T =0 ranges of stability for pure stages are
shown in Fig. 1.

For a model containing only pure stages, ' it
can be shown that, at T =0,

0.80
(1 l "LIQUlD" 00

teractions responsible for staging. Although the
variation in p in going from one stage to the next
is quite small, such changes can be controlled ex-
perimentally since the chemical potential is a log-
arithmic function of the equilibrium vapor pres-
sure. It may be noted that within the present mod-
el there is always a region of nonpure stages"
for 1&n & 2, related to the region of pure stages
for n & 2 by the symmetry (empty/filled) about n
= 2 implied by binary interactions. However,
since there is as yet no experimental evidence
for such states (e.g. , three layers filled, one
empty for n =-,') it is not clear that the model of
concentration-independent interactions" is ap-
propriate for intercalant densities near satura-
tion. Careful in situ x-ray experiments have yet
to be performed in this region.

The phase diagram in the (p, T) and (n, T) planes
was calculated in mean-field theory, assuming
that the nonpure stages, which occupy a small por-
tion of the T =0 phase diagram, are negligible for
T & 0 as well. " Since there is no interaction be-
tween configurations within mean-field theory,
the presence of nonpure stages in a small region
of phase space would not affect the validity of the
calculation for the pure stages. Periodicities up
to a maximum of n =10 were investigated and the
mean-field free energy was calculated using the

TABLE I. Ranges of stabiltiy of T = 0 phases. n is
the inverse of the average concentration; l~p is the
range of stability, and a characterizes the power-law
interaction defined in the text. n = n (an integer) rep-
resents pure-stage ordering. The range of stability
for n nonintegral consists of the sum of the ranges
of stability for all nonpure stages with concentrations
in the indicated range.
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0.0002
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FIG. 1. Phase diagram for V= 2Up and e = 4 plotted
as a function of temperature T and chemical potential
p, both normalized to Up ~ For clarity, the phase dia-
gram is given as a linear function of p' = (p/Up+ p)
-leading to a nonlinear p scale on the right-hand side
of the figure. The integers in parentheses are the
stable pure-stage phases. T and T~ are the maximum
and tricritical temperatures, respectively.
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FIG. 2. Same phase diagram as in Fig. 1 plotted as
a function of normalized temperature T/Uo and con-
centration 8 ~. The integers in parentheses are the
single-phase pure-stage states, while the cross-hatched
areas denote two-phase regions. For clarity only
stages 1 through 5 have been shown.

o, ={exp[P(-p —U,o, +&~V,Jo~)]+1] ', (3)

where P =1/kT. The mean-field equations were
solved self-consistently for n =1, 2, and 3, while
for n =4, .. . , 10 a low-temperature expansion
was used. This expansion is justified by the fact
that these stages are only stable at low tempera-
tures where the variations in the concentration
are small.

The resulting phase diagrams are shown in
Figs. 1 and 2 for an interlayer interaction with
a =4 and V = ~Up. As shown in Fig. 1, the high-
stage phases all terminate in a dilute stage-1
phase ("gas") whose concentration goes to zero
as T -0. The transitions from stage to stage for
n&2 are all of first order for a model with weak
interlayer interactions and the concentration
ranges over which these states are stable are
within 6%%uo of their T =0 concentrations as shown
in Fig. 2. On the other hand, the stage-2-stage-1
transition is second order for T & T, with a large
range of stoichiometries predicted for the stage-
2 phase at high temperatures as shown in Fig. 2.
Furthermore, since the stage-2-stage-1 transi-
tion is isomorphic to that of a metamagnet in a
magnetic field, "'"the maximum temperature at
which stage bvo is stable is given by

T =a(Uo-V, +V~),

while the tricritical point (T, ) is given by

T, /T =1-V /[3(U —V, )].
Here, V, =V2 ((o.) while V, +V, =V)(n). With
the values for V and n given above, this yields
T 0 37Up and T g

0 30Up in agreement with the
numerical calculations of Fig. 1. For T & T the
stage-1 phase is divided into "gas" and "liquid"
phases, each having a restricted range of compo-
sition, while for T T the composition range is
unrestricted and no staged g &1) states are sta-
ble. The cross-hatched areas in Fig. 2 represent
states in a two-phase region.

In Fig. 2, the symmetry of the outermost phase
boundary about n ' = 2 is due to the simple model
of two-body attractive in-plane interactions.
More complicated (and realistic) representations
of the in-plane interactions would result in a less-
symmetric phase boundary. Although the exact
nature of the in-plane ordering is not addressed
by the mean-field theory, it must be noted that
all changes of stage as a function of temperature
(Figs. 1 and 2) occur because of changes in the
average in-plane density [Eq. (3)]. For example,
the continuous stage-2-stage-1 transition at T
=T can be understood as arising from a density
distribution of (o»o, ) = (1,0) at T =0. As the tem-
perature is increased, "vacancies" are created
in layer 1 and "interstitials" in layer 2 so that at
T =T, (o„o2) = (2 2) a state which is indistin-
guishable from a dilute stage 1.

Although no systematic in situ x-ray studies of
the equilibrium phase diagrams of intercalation
compounds have as yet been reported, recent x-
ray measurements of in-plane densities of graph-
ite intercalation compounds" have shown depar-
tures from the ideal low-temperature stoichiome-
tries. In addition, the transition from stage 1 to
a two-phase stage-1-stage-2 mixture at fixed
concentration (n

' =0.8 as shown by the dashed
line in Fig. 2 has been reported to occur at Tp
= 600 K for Cs-graphite intercalation compounds. "
Figure 2 indicates that T,/U, =0.24, so that U,
= 2400 K and T = 925 K for the Cs-graphite sys-
tem. Future experiments can test the simple
model presented here by first looking for the di-
lute "gas" stage-1 phase. Secondly, after search-
ing for the existence of nonpure stages, "the tem-
perature and chemical-potential dependence of the
the stage-2 concentration should be checked to
confirm the existence of T, and T . Finally, the
ranges of stability of the high-stage compounds
should be investigated since they are directly re-
lated to the form of the repulsive interlayer inter-
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action. Such experimental inf ormation would fa-
cilitate further elaboration of the simple theory
described here, such as the introduction of many-
body interactions or couplings to other (elastic,
e1ectronic) degrees of freedom.
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Computer simulations of crack properties were performed on a two-dimensional tri-
angular lattice with a Lennard-Jones interatomic interaction. The use of a long-range
potential and an unconstrained sample revealed novel features compared to earlier sim-
ulations. The Griffith energy treatment for fracture was found wanting. This system is
brittle at low stresses in agreement with the Rice-Thomson criterion and shows disloca-
tion formation at elevated stresses.

Brittle fracture is an important material prop-
erty and yet has received relatively little atten-
tion with respect to the underlying atomic mech-
anisms. Indeed, it is only with the advent of mod-
ern computers that dynamic investigations be-

came possible. ' ' Prior to these recent develop-
ments essentially all approaches were based on
continuum mechanics, and elastic statics. ' Grif-
fith has shown how energy criteria and continuum
mechanics can be combined to yield a critical
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