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FIG. 4. 95Wo confidence limits for the production
cross section of narrow mass Pp states.

enhanced production expected in n'p reactions.
Figure 4 indicates the 95%-confidence-level
cross-section limit over our mass range. "

In summary, we find no evidence for produc-
tion of narrow pp states produced in &'p - b,t"pp.
In particular, we are unable to confirm the exis-
tence of states at 2.02 and 2.20 GeV jc' reported
in v-P —4f'PP. Those states would appear as &5-
standard-deviation effects in our experiment.
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In weak-interaction models with spontaneous parity nonconservation, based on the gauge
group SV(2)1.&SV(2)zS V{1), we obtain the following formula for the neutrino mass:
~m /gm+, where +'z is the gauge boson which mediates right-handed weak interactions.
This formula, valid for each lepton generation, relates the maximality of observed parity
nonconservation at low energies to the smallness of neutrino masses.

PACS numbers: 11.30.Er, 11.30.Ly, 12.30.Ez, 14.60.Gh.

It is attractive to suppose that observed parity at high energies. This idea has been implement-
nonconservation in weak interactions is only a ed in unified gauge theories of electroweak inter-
low-energy phenomenon, which ought to disappear actions based on the gauge group SU(2)~423 SU(2)„
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S U(1),' where parity nonconservation arises from
the spontaneous breaking of the gauge symmetry.
The suppression of the right-handed weak cur-
rents in this model owes its origin to the large
mass of the right-handed gauge bosons. As far
as the structure of the neutrino neutral-current
interactions' and the parity-nonconserving elec-
tron-hadron weak interactions' are concerned,
this model is indistinguishable from the standard
SU(2)~CR U(1) model at the present level of exper-
imental accuracy. There exists, however, a
fundamental distinction between the left-right-
symmetric models and the pure left-handed
SU(2)~S U(1) models: In the former the neutrino
has an arbitrary but finite mass, whereas in the
latter it is massless. It is therefore important
to understand the smallness of the neutrino mass
in left-right symmetric models. Furthermore,
it is very suggestive in the context of these mod-
els that there may be a connection between the
smallness of the neutrino mass and the suppres-
sion of the right-handed weak interactions. In
this Letter, we propose a model of spontaneous
parity nonconservation based on the SU(2)~SU(2)„

U(l) gauge group, where this connection is
brought out explicitly. We obtain the following
estimate that relates the neutrino mass to the
mass of the right-handed gauge bosons (see be-
low for the detailed nature of the approximations):

m„=m, '/gm~ . (1)

A similar formula holds for leptons in each gen-
eration. This formula is very illuminating in the
sense that, in the limit of yn ~„-~, the neutrino
mass goes to zero and we have at the same time
a pure V -A theory of weak interactions.

We now proceed to derive Eq. (1) for one gen-
eration of leptons and repeat the same procedure
for each generation. The main new ingredient of
our proposal is that we start with two Majorana"
neutrinos v and N and choose the left- and right-
handed lepton multiplets prior to spontaneous
breakdown to be

(2)

with SU(2)~S SU(2)zS U(1) representation num-
bers (-,', 0, —1) and (0, —,', —1), respectively. The
quarks are assigned to left-right doublets as be-
fore. ' We impose the left-right symmetry on the
Lagrangian; under this symmetry g~ —g~ and
this demands that at the tree level, g~ =g„. We
now introduce the Higgs multiplets' to break the
gauge symmetry down to U(1), : p transforms

as the (—,', —„0) representation of the gauge group;
b, ~—= (1,0, 2) and Az —= (0, 1, 2). Under left-right
discrete symmetry cp —y and A~ —6„. We
have already shown' earlier that, starting with a
left-right-symmetric potential, it is possible to
find a domain of coupling parameters in the theo-
ry for which we have

(3)

It is easy to see that for 5» K K after the first
stage of the symmetry breakdown, the local sym-
metry group is reduced to SU(2)~I3 U(1), where
U(1) corresponds to T»+ Y, which is finally brok-
en down to U(l), by (p) g 0.

We now proceed to discuss the main result of
our paper, i.e. , calculation of the neutrino mass-
es. For simplicity, we also assume that K «K.
The gauge-invariant Yukawa couplings can be
written as

1 +

2

1 g+
v2

and C is the Dirac charge-conjugation matrix.
From (3) and (4) we find for the electron mass

~, —-h2K

and the mass matrix' for the v-N sector is

h, K I,V
(6)

where we have used the property of Majorana
particles v'= v, N'=N in showing that N~ CN„
and v~ Cv~ are mass terms. We further assume
that Yukawa couplings h, and h2 are of the same
order of magnitude, i.e. , h, =82. It then follows
from (6) that m„=h,v and

m, = (h, ~)'/m„= gm, '/h, m~ .
This is the main result of our paper. Choosing

a reasonable value for h„e.g. , h, =g', we ob-
tain (1). For the second and third generations of
leptons, the corresponding formulas are

(6)
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2= 2 2—
pygmy cos 0~,

mph'& mz (2 cos20~/cos 9s),
(9)

Note the factor 2 in (9), which is characteristic
of the triplet Higgs boson A„which breaks SU(2)„.

(b) In order to suppress lepton-number-chang-
ing processes such as p. -ey and p-3e, it turns
out to be desirable to make the mixings of elec-
tron generation with p, and 7 generation as small
as possible. We make it zero naturally by impos-
ing the following discrete symmetry on the La-
grangian

(ii, (il. ~ 4iz

42L 42L & ksR ~sR&

ass, 4sz, 4sz 4sz

&z-&a~

(10)

where i =1,2, 3 counts the electron, the muon,

where we assume the heavy Majorana mass to be
generation independent and we ignore generation
mixings. This admittedly arbitrary assumption
is taken only for illustrative purposes; therefore
the values for ~, and yn, should be taken with

P 7.

this in mind.
To point out that these formulas lead to quite

reasonable upper limits on the neutrino masses,
we note that the analysis of charged-" and neu-
tral-current' phenomena puts a lower bound on
the right-handed W'-boson mass, i.e. , m~„~ 3m~~
(or m~ ~ 250-300 GeV). . If we choose m~ a 300
GeV, Eqs. (1) and (8) yield m „~1.5 eV, m „~e
& 56 keV, and m„~ 18 MeV, in accord with the
present laboratory experiments. "

We now comment on the quark sector of the
model. As noted earlier, if we restrict ourselves
to one generation, the left and right doublets are
(u~, d~)=—(—,', 0, s) and (u„,d„)—= (0, —,', s). They ob-
tain their mass through coupling to the Higgs mul-
tiplet y. However, because the U(1) quantum
number for quarks is 3, 4~ ~ do not couple to
quark s.

We riow wish to remark on the following as-
pects of the model:

(a) At low energies, our model is indistinguish-
able from the standard model, since (A~) x 0 still
keeps Y'—= T»+ Y and T~ unbroken; that is,
SU(2)~ U(1) is unbroken after the first stage of
symmetry breaking. We obtain the following
mass relations between the neutral and charged
gauge mesons (in the limit v'» K'+ v"):

and the v generation, respectively, i.e. ,

etc. This symmetry obviously forbids e-p. and
e-7 mixings and, since it is unbroken, that will
be true to all orders in perturbation theory.
Therefore, in this model p, -ey and p-3e are
forbidden processes. By the same token, neu-
trino oscillations v, —v&, v, —p, are absent in
this model (but not v„—v, ). The interesting
physical consequences when the above symmetry
is relaxed will be dealt with elsewhere.

(c) A further characteristic of our model is the
existence of doubly charged Higgs bosons 6~"
and 5„".However, it is easily seen that their
masses are of order m~„and therefore they are
not expected to play an important role at low en-
ergies.

(d) The presence of Majorana neutrinos will al-
low for neutrinoless double P decay. "'" The con-
tribution coming from the exchanges of W~ in-
volves the light Majorana neutrino v, and is
known" to be a few orders of magnitude below
the experimentally allowed value. However, it
is possible to exchange W„'s in which case the
process goes through the heavy Majorana parti-
cle N as an internal state. We just mention that
in this case one obtains the limit on N using the
analysis of Ref. 13: mN~ (m~ /m~ ) &&10' GeV
~ 10' GeV, which is definitely satisfied, since
gyes„-—~~ —-300 GeV. It should be emphasized,
though, that more precise measurements of dou-
ble P decay could in principle provide a more
stringent lower bound on ~„, or in turn on yn~„.

In summary, we have constructed a realistic
and simple model with spontaneous parity non-
conservation, where the suppression of V+A
currents is proportional to neutrino mass. The
model provides, therefore, an understanding'
of a tiny neutrino mass. We believe that it makes
the search for the effects due to finite ~~ even
more warranted than before.
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