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which in the limit i p, i- 0 corresponds to Etl. (13)
and in the limit y —0 to Etl. (16).

These results can also be extended to include
the effects of symmetry-breaking fields. One
finds logarithmic corrections to power-law scal-
ing for the conjugate order parameter at q =q'„
and an essential singularity in q —q, for quanti-
ties like the discontinuity in the zero-field mag-
netization at T =T„ in analogy to Eels. (13) and

(9), respectively. "
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An Ising model on a square lattice is studied, where one row of horizontal bonds has
an energy E&' different from all other horizontal bonds. The correlation of two spins
is calculated in this row, resulting in exponents P and g which depend on E&' . The
long-distance behavior of the correlation for fixed T 8 T, is found to have different forms
depending upon the value of E&'.

Since the discovery by Baxter' of a two-dimen-
sional (2D) statistical mechanical model whose
specific heat exponent depends on the parameters
of the Hamiltonian there has been widespread
recognition that many other 2D models such as
the massive Thirring model, ' the Ashkin- Teller
model, ' and the planar rotator' [O(2)] model

wol have correlation functions with continuous
critical indices. For the region where the mass
gap vanishes these models all bear some relation
in leading order to the Gaussian model. ' How-
ever, when there is a mass gap the only exact
information known is the correlation length of
the Baxter model. ' It is thus extremely interest-
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ing to investigate the phenomenon of continuous
critical exponents in a simple modification of the
Ising model. In this Letter we discuss the princi-
pal properties of the two-point function of this
model.

Let E, (E,) be the horizontal (vertical) interac-
tion energies of the homogeneous Ising model on
the square lattice, "but let one row (called zero)
of horizontal bonds have an altered interaction
energy E, '.' Consider the two-spin correlation
function (o» oo„) in the row of the altered hori-
zontal bonds E, '. Because the lattice is reflec-
tion symmetric about this rom, the correlation
function can be calculated as the N &N Toeplitz
determinant, so that

(o»00~)=det!a; !, i, )=1,.. . , N,

where the elements a„may be calculated either
by the operator technique'" or by Pfaffian meth-

ods'" as

a =(2v)-' J dge ~"eK(e")

K(e' ) =[C(e' )+z]/[1+~C(e")],

(,e (1 —o.,e' )(1 —o.,e 'e) 'i'
(1 —n,e ")(1—o.,e'~)

C(e' ) is well-known generating function for the

pure Ey Fy case,

& =tanh[(E, ' -E,)/kT], o.', =Zi(1 —Z2)/(1+Z2),

n, = Z, '(1 —Z,)/(1+Z, ), Z,. = tanh[E, /kT],

the square root being defined to be +1 at 8= r.
The following are some of the principal proper-

ties of the two-point function.
(1) Spontaneous magnetization in the row T.h—e

critical temperature of this model is still given

by n, = 1 (as it is for x=0). When T& T, (o., &1)
the magnetization in the zeroth row, K„may be
calculated by Szego's theorem" in the form

, ""dg, ""dg, lnK(exp(ig, ))-lnK(exp(ig, )) '

We thus find that, as T-T, (u, -1 ),

K, -f(~, )(1 —o. ') 8& '& '

P(K, ) = —,
' (& 'arccos[2z, /(1+ e, ')]j' = —,

' (&' raccsotanh[2(E, ' —E,)/kT, ]j',
(8)

"d8 " dt9
lnf (v) = —,

'
2

'
2

' (sin[2(8, —8,)]j '
([lnK, (exp(ig, ))—lnK, (exp(ig, )) ]'+ 2p(8, —8,)'j, (8)"0 2" ~0

where K,(e' ) is given by (3) with C(e' ) replaced by ie ' ' [(1—o.,e' )/(1 —o',e ' )]' '. The exponent
p(K ) depends continuously on ~, and agrees with the related calculation of Bariev. ' Note that p(+1) = 0,
p(0) =— p(- 1) = |, and lnf(y) vanishes when v =+ 1 and diverges when ~- —1. These two limits reflect
the fact that when E,i-+ ~ (- ~) the spins in the row are all parallel (antiparallel).

(2) Correlation at T =T . When T =T, the leading term as N- ~ may be determined by calculating
the ratio of (g o &) to the Nx N Cauchy determinant ger crated by C (e' ) = exp&- i(8 —m)[2P]'" j following
the method of Wu. ""%e find

(o„o,g& -A (~,)f(~,)N "'"',
where f(v) is given by (8) and

A = (1 —2P) exp f —[2Py + Q (2P)"(t;(2n —1)—1)/n]].
n= 1

(10)

with y denoting Euler's constant and f (s) the g function. Thus the critical index q(K) obeys the usual
hyperscaling relation (d —2+ q) v = 2P with v = 1 and d =2.

(3) Large-N behavior for T&T,.—When T &T, the index of K(e' ) is zero and we may make the Wiener-
Hopf factorizationK(e' ) =P, '(e' )Q, '(e ' ), where P, (g) and Q, ($) are both analytic for! $! &1 and

continuous and nonzero for! g! & 1. Since K(e' ) =K '(e ' ) we have P((e' )Q, (e' ) =1 and the calcula-
tion' of the case ~ = 0 may be generalized to give

(o»o,„)=3',' exp[- Q E,~'"'],
n= 1
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where

F,~'"~=n '(2w) '" g fdg, ,$„. ,"P,(g„. ,)P,((„,.')(], , -(„.) '

&d$.,h.; "P, '(&.,)P, '(g. , ')(&., -&.,„) ',

with $,„„=-&„$... I &1, and
I $„I& 1.

The splitting function P, (e' ) can be explicitly calculated using Jacobi's 9 functions. However, the
analytic properties of P, (e' ) may be read off from K(e' ) and this will suffice for the calculation of
the major features of the N- ~ behavior.

The kernel K(e' ) has square-root branch points at a „n„a, ', and a, '. In addition it will have
zeros for these values of $, where C($)+~ =0 and poles where 1+~C($)=0. On the sheet of the square
root defined by C(- 1)=+ 1 the function C($) is never negative real. Therefore if v & 0 there are neither
zeros nor poles. However, for v&0 there are solutions and we find zeros of K($) at p, ' and p„where

-1
= 2(ag —K a2) ((1—K')(1+a,a,)+ [(1—~')'(1 —a,a, )'+ 4~'(a, —n, )']"'), (13)

2

~

~

and we find poles at P, and p, '. The P, have the
following properties: (i) If e =0, then P, =a, and

P, =a„(ii) if —1&&&0, then —1&P,&a, &a, &P,
&1. When —1&v&1, function P, (e '

) has square-
root branch points at a, and n, [at which P, ($) is
finite and nonzero if xv 0] and when —1&~ & 0,
P, (e 'e) has a zero at P, and a pole at P,. Thus
we find from (12) that, for 0&~&1,

(o„o,„&-3tI,'(1+a, (~)N 'n, '"), (14)

where only (av) depends on v, and diverges for
K 0. For —1 &K &0, the situation is more com-
plicated. In asymptotically evaluating the g, in-
tegral [of (12) with n= 1] the contour is deformed
outward and the leading singularity is now the
pole of P& '($) at p, '. The $, contour is de-
formed inward and the singularity closest to the
unit circle will be either the square root at a, or
the pole at P,. If

—[(1+a,')(a, +a,)/2n, (1+a,a, )]"'&~ &0, (15)

then —p, &a, and the leading behavior is

«Oooo~& -3|ID'&1+a.(~)N "'(n.P.)")

(ooooo~& -IIO'&1+ (- I)"as(x)(P21 Pil )"),

where we have made explicit the fact that the ap-
proach to the limit is oscillatory. This behavior
is expected because a large negative value of E,'
tends to make the spins in the zeroth row anti-
align. Note that if T -T, (a, —1) then the region
(17) shrinks to the point —1 only and hence this
local antiferromagnetic behavior is eventually
washed out by the ferromagnetic behavior of the
bulk.

(4) Large Nbeha-vior for T & T,. When T & T—,
the index of K(e' ) is not zero. We therefore
consider the shifted kernel K,(e' ) = —e' K(e' )
and make the factorization K,(e' ) =P, '(e' )

xq& '(e ' ), where again P&($) and Q&($)»e
analytic for

~ $ ~&1 and continuous and nonzero
for [ )~&1, and P, (e' )Q&(e' ) =l. We may again
generalize the studies made'" for K = 0 to find

In this case the approach to the limit is still
monotonic but the correlation length now depends
on K even though v is still equal to 1. If, on the
other hand,

(1+a,')(n, +n, )
2n, (l+ n,n, )

00+ON&

=3tI„'(K)p g '"" exp(-p I',""),
n=O

where gtI„'(~) is obtained by applying Szego's
theorem to K&,

(19)

g~'"'"=(2 ') 'fd$oko" 'P (4o)P (4o ') Il (2 ') 'Id' k & "(1—5 - g ) '

~» (h. - )» (k. , ')P, ($.,)P, (5., '), (2o)
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where I$, I
&1 and E,('") is obtained from (12) with

I', replaced by P, and N by N+1. At T-T, ' we
find that Mp&'(v) vanishes at (T —T,)' ( '). Fur-
thermore in the scaling limit, g '"+'~ contains the
temperature-dependent multiplicative factor (T
-T,)' s ') 6( '). Therefore the full correlation
function (19) has the factor (T —T,)' (") in the
scaling limit and hence the high-temperature hy-
perscaling relation involving q holds.

In contrast to T & T, the kernel K, (e' ) [and
therefore P& (e' )] now contains poles and zeros
for both signs of ~. If 0& s & 1, then P&(5) has a
pole at P, in addition to square roots at a, and

a, ', where 1&P,&a, &a, ' and P, is still given
by (13). We thus find from (20) that, for 0&v &1,

(appcpg) Kp (K)ay& (K)p2 (21)

where a„(~)-0. This form is not the same as
that of the a =0 special case and the correlation
length depends on ~.

When -1&~&0, then P, ($) has a pole at P, '.

(o„vp„)-9R„'(~)a„(a)X '"a, ", (23)
I

—[2a, (1+a,a,)/(a, +a, )(1+a,')]"'& ~ & 0, (22)

then a, '& —P, ', the branch cut at a, ' domi-
nates the integral, and we find

where a»(z) diverges as v-0. Finally if

&cppa.~) -3(Ip '~. (~)(- I)"IP,I". (25)

This is the oscillatory behavior analogous to the
regime (17) of T &T,. This region also disappears
as 0~-1.

We conclude with a few remarks.
There are many modifications of the Ising mod-

el which will lead to continuous exponents. For
example, in a square Ising lattice we may intro-
duce one diagonal line of bonds of strength E,.
The correlation function (o„o„„)in this special
diagonal may be shown to be given by an NxN
Toeplitz determinant of the form (1) where the
generating function is given by (3) with a,- 0,
a, —[sinh(2E, /kT) sinh(2E, /kT)] ' and ~- tanh(E, /kT).

We may also change the energies of two succes-
sive rows of vertical bonds from E, to E,'. The
correlation in the row between these two changed
rows of bonds is still given by (1) where the gen-
erating function is now

—1&@&—[2a2(1+a,a2)/(a, +a2)(1+a2 )]'~, (24)

then a, '& —P, ', the pole at P, ' dominates the
integral, and we find

K(e' ) =[A(e' )C(e' )+B(e' )]/[A(e ' )+B(e ' )C(e' )],
with

A(e' ) = —coth[2(E, '*-E,*)/kT]+i sin() sinh(2E, /kT), B(e' ) =cos8 —i sine cosh(2E, /kT),

(26)

(27)

where E* is defined by sinh(2E*/kT) sinh(2E/kT) = 1.
Finally, it is also interesting to study the model'" with one row of vertical bonds E, replaced by

E,'. For all rows the correlation is now given by a 2x 2 block determinant (when E,'xE,). Bariev'
has calculated the local magnetization in a rom far from the modified row and finds a continuous ex-
ponent. We therefore expect that on the row adjacent to E,' the magnetization for T-T, will be of the
form (6) with P(~,) as calculated by Bariev. However, the amplitude function f (K) must be completely
different from (8) because when E,'- 0, then P(~)- —,

' and the model reduces to the previously studied
half-plane problem. '" This is in contrast to the case of the present paper where if E,'- —~ then p
is formally —,

' but f (~)-~ and, in fact, the zeroth row becomes completely antialigned.
It is a pleasure to thank Professor T. T. %u for useful discussions. This work is supported in part

by the National Science Foundation under Grants No. PHY-79-06376 and No. DMR-79-08556.

R. Baxter, Phys. Rev. Lett. 26, 832 (1971), and Ann. Phys. 70, 193 (1972), and 76, 1, 25, 48, (1978).
The massless Thirring xnodel was introduced by %. Thirring, Ann. Phys. 8, 91 (1958). For the massive model,

see S. Coleman, Phys. Rev. D ll, 2088 (1975); A. Luther, Phys. Rev. B 14, 2153 (1976); M. Liischer, Nucl. Phys.
B117, 475 (1976).

J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1978); J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

5J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977); L. P. Kadanoff,

843



VOLUME 44, NUMBER 13 PHYSICAL REVIEW LETTERS 31. MARCH 1980

Ann. Phy~. 120, 39 (1979); L. P. Kadanoff and A. Brown, Ann. Phys. 121, 318 (1979).
6J. D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev. A 8, 2526 (1973&.
L. Onsager, Phys. Hev. 65, 117 (1944&; B. Kaufman, Phys. Rev. 76, 1232 (1949&; B. Kaufman and L. Onsager,

Phys. Rev. 76, 1244 (1949&.
Whenever possible we follow B. M. McCoy and T. T. Wu, The Two DimensionaL Ising Model (Harvard Univ. Press,

Cambridge, Mass. , 1973~.
~This model has recently been considered by R. Z. Bariev, Zh. Eksp. Teor. Fiz. 77, 1217 (1979) [Sov. Phys.

JETP (to be published) &, vrho calculated the spontaneous magnetization at distances proportional to the correlation
length in the T-T, limit.

J. H. H. Perk and H. W. Capel, Physica (Utrecht) 89A, 265 (1977).
E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4, 308 (1963).

' Q. Szego, Communications du Seminaire Mathematique de 1'Universite de Lund, tome supplementaire dedie a
Marcel Riesz, 1952 (unpublished), p. 228.' T. T. Wu, Phys. Rev. 149, 380 (1966).

'4T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Phys. Rev. 8 13, 316 (1976). For a simplified derivation
see B. M. McCoy, C. A. Tracy, and T, T. Wu, in Statistica) Mechanics and Statistica/ Methods in Theory and AP-
Plications, edited by Uzi Landman (Plenum, New York, 1977I, p. 83.

~~M. E. Fisher and A. E. Ferdinand, Phys. Rev. Lett. 19, 169 (1967), study the specific heat of this model.
'6B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967).

844


