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This Letter shows how the well-known expressions for conductivity and Hall mobility in
crystalline semiconductors can be extended to disordered systems with a simple reinter-
pretation of the concepts of electronic mass, velocity, and lifetime based on the density
matrix approach.

Electronic conduction in crystalline solids is
commonly described using the Boltzmann equa-
tion. In disordered systems, where the wave
number K is often not a good quantum number, I
turn to a more fundamental theory with use of the
density matrix and the Kubo formalism. The
transport properties are then described in terms
of electronic transitions between states closely
spaced in energy. Depending on the nature of
these states and of the transitions, the conduction
process is classified into three regimes which we
will refer to as the propagating, jumping, and
hopping regimes. The propagating regime is the
familiar one in crystalline solid theory; the elec-
tronic states are approximate velocity eigenstates
with a mean lifetime determined by phonon and
impurity scattering. The hopping regime is the
other extreme where the electronic states are lo-
calized around particular atoms; the electrons
can move only through phonon-assisted hopping,
so that the conductivity goes to zero as the tem-
perature tends to zero. In between these two is
the regime encountered near mobility edges in
amorphous solids where the electronic states are
extended but there is no phase coherence from
one atom to the next. The electron moves be-
tween nearest neighbors by quantum-mechanical
tunneling depending on the overlap integral be-
tween neighboring states. However, because of
disorder, alternative tunneling paths have ran-
dom phases and do not interfere, unlike the propa-
gating regime. On the other hand, the tunneling
proceeds without the assistance of phonons and is
temperature independent, unlike the hopping re-
gime. To describe this regime, I will use the
termjumping coined by Cohen

The Hall effect in the propagating regime is
well understood and is readily described by use
of elementary kinetic arguments or the Boltzmann
transport theory. In the jumping and hopping re-
gimes, however, the Hall effect is much more
complicated. No complete theory has emerged
yet though our understanding has been advanced
considerably through the works of various authors
who have demonstrated that the Hall effect arises

o„„=e'(v„'T)N(EF),

o„,= (e'a/cm*)(v„'~')N(&, ),

pH = (c/H)o„„/o„„,

(1a)

(1b)

(1c)

1/R H coxx//"H~ (1d)

where N(E~) is the density of states at the Fermi
level, v„is the x-directed velocity of a state at
the Fermi level, T is the lifetime, yn* is the ef-
fective mass, and angular brackets denote the
average value over the Fermi surface. An ap-
propriate averaging is required when the lifetime
~ is not constant. ' Equations (1) are true for con-
duction by electrons near the Fermi level. The
results for conduction by electrons activated to a
conduction band are obtained by replacing N(E„)
with N(E, ) exp[(E „-E,)/kT), where I', is the con-
duction band edge. ~ and v„then refer to states
around F,

I propose to show that Eqs. (1) may be used in
the hopping and jumping regimes as well with an
appropriate interpretation of v„,v, and ~*. In
the next section I will discuss the basis for this

from the interference of transition amplitudes
via alternative paths. ' '

In this Letter I wish to show that with a straight-
forward and consistent redefinition of the parame-
ters, the well-known expressions for conductivity
and Hall mobility in the propagating regime may
be applied to the jumping and the hopping regimes
as well. The results obtained in this way agree
(within a constant) with those derived by other
authors using more rigorous arguments. This
demonstration is not intended as a substitute for
rigorous analysis; rather, the purpose is to point
out a simple connection among the three regimes.
I believe that such a unifying point of view will
prove useful in gaining insights into this difficult
problem.

I reproduce below the expressions for the dc
conductivity o„„,the transverse conductivity cr„,
in a magnetic field H, the Hall mobility LL(H, and

the Hall coefficient' R„:
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e'E ~~ ( )
f (E~) -f (E,)

V x Ax cx 8 E En 8 8 n

where V is the volume and e„is the x-directed
velocity operator.

I may now replace x z in terms of (v„) 8 with
use of the commutation relation ihv„=[If,x]. This
yields

c (v„),
(Ea-E )/h+ir ' (4)

where E8 and E are the energies of the states 0
and P, and the finite lifetime (2r) of the states is
treated as an imaginary part of the energy. It is
apparent from Eqs (3) an.d (4) that only pairs of
states close together in energy (E ~ES) contrib-
ute to the real part of the conductivity. For such
pairs I may set x z

—- (v„)„S7andre'place the last
term in Eq. (3) by the derivative

a„„=(e'/V)Q ~(- df /dE„)g 6~ (v, )~8('T (5)

Equation (5) readily leads to Eq. (1a) if we note
that in the propagating regime o and p are approx-
imate velocity eigenstates and that —df/dE„ is a
delta, function at E =Ep at low temperatures.

However, Eq. (5) is valid even when a and P
are cot velocity eigenstates, as' in the nonpropa-
gating regimes. To extend Eqs. (1) to these re-
gimes we should use Q s~ (v„) 8~' in place of v„'
where n is a state at the Fermi level and p is
any state to which electrons make transitions
from o. 7 is then the lifetime of the state o, to

interpretation.
Interpretation of v„,r, m* in nonpropagating

regimes. —Equations (1a) and (1b) are commonly
derived from the Boltzmann equation. I present
below a short derivation of Eq. (la) with use of a
density matrix formalism, for it illustrates the
basis for the interpretation of v, and 7. in the
jumping and hopping regimes.

An electric field E in the x direction produces
a perturbation potential eEx. The change in the
density matrix is obtained from perturbation the-
ory,

f (E ) -f ( E s)
AP 8=eEx 8

8 n

where a and P denote two eigenstates of the un-
perturbed Hamiltonian and f (E) denotes the equi-
librium Fermi distribution function. The result-
ing current J in the x direction is obtained from
the current operator

~=(e/~)g (v.)s, &p 8

be determined appropriately for the different re-
gimes.

I now come to the more difficult question of in-
terpreting ~*. In crystalline solid theory the ef-
fective mass is commonly defined in terms of the
curvature of the E-k plots —R definition which
does not extend easily to disordered systems.
However, I can define ~* more generally by cal-
culating the expectation value of the x-directed
acceleration operator a„in response to an x-di-
rected electric field E. With use of Eq. (2) for
~&&8~

(a,) =eE g (a„)s,x g
f (E.) -f (E,)

Now, (v,)„sis related to (a„)„zthe same way as
(x) 8 is related to (v,) 8 [Eq. (4)]; so

(a„)g (x).g =l(v.).sl'.

(6)

(7)

One may write Eq. (6) as

&a. )=2eE&f(E )pE "
En 8 8 n

assuming that
~ (v„) 8~

=
~ (v„)~. Equation (6) sug-

gests a definition of ng* for an electron in state a

(9)

Here the p summation extends over all states to
which the electron can make transitions from o. .

To illustrate this definition of m*, let us con-
sider an electron at the bottom of a band in the
tight-binding model. I know from the usual crys-
talline solid theory that

1/m *= 2''/m', (10)

where J is the overlap integral between neighbor-
ing sites separated by a distance a. We get the
same result if we consider the electron as mak-
ing transitions from a site n to one of the near-
est-neighbor sites P. I am assuming that the
local site representation is an approximate eigen-
state of the Hamiltonian so that Eq. (7) is valid.
With use of the relation

zn(v„)„,= [H, x]~,
we have for this case

(v,„-)~=-iJa/h.

Noting that there are two neighboring sites P,
one on each side along the x direction, and that
Ez-E =2J, I get Eq. (10) from Eq. (9). I also
note that the sign of yn* for a state o as defined
by Eq. (9) depends on whether there are more
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states P available immediately above n or below
e. The effective mass is thus negative at the
top of the band as in the usual crystalline solid
theory.

To summarize, in order to extend the Eqs. (1)
for conductivity and Hall mobility of crystalline
solids to disordered systems one needs to inter-
pret v„,7, and gyes* appropriately, based on the
density matrix approach. For an electron in a
state cv I interpret 7 as the lifetime of the state,
v„'as the sum of the squares of the matrix ele-
ments of possible transitions Q 8~ (v„)&~', and
m* as defined by Eq. (9).

Conductivity and Hall Mobility in nonpxopagat
ing regimes. —I will now use this interpretation
of w, v„,and m* to calculate the conductivity
and Hall mobility in the jumping and the hopping
regimes from the familiar equations for the prop-
agating regime [Eq. (1)]. The results are com-
pared with Hefs. 3 and 5. In either case I will
assume a localized state to be an approximate
eigenstate of the Hamiltonian, with a finite life-
time.

(a) Jumping regime: In the random-phase
model for this regime the electron is pictured
as jumping to nearest neighbors as in the tight-
binding model of crystalline solids. The differ-
ence, however, is that phase coherence is lost
after each jump; the lifetime ~ is thus equal to
the mean time for each jump. The expressions
for m* and v„'remain the same as in the tight-
binding model discussed in the last section:

1/m* = 2Ja'/& (12a)

Q ((v ) )'=2J'a'/k' (12b)

The lifetime & is the mean time for each jump,
and can be written as

~-ksa'N(z, ), (12c)

where Z is the nearest-neighbor coordination
number. This is because the approximate energy
separation between nearest-neighbor states is

[Za'N(E&)] '. If conduction is by electrons ac-
tivated to a conduction band rather than at the
Fermi level, then N(Z~) is replaced by N(E, ).
With use of Eq. (1) and (12) we thus have

o„„=(2e'/S) Za'J' [N(Z, )]', (13a)

o» = (4e'/I) (eH/&c)Z'a"J'[N(EF)]', (13b)
l

and

Equation (13a) agrees with Ref. 3 within a factor
of m/3. Equation (13b) also agrees with Ref. 3
except that Z' is replaced by 2m'Zg/3 where Z
and g are parameters depending on the nearest-
neighbor arrangement. I believe that the differ-
ences arise from our approximate evaluation of
7, the meantime for a jump. The term 7'2 in
0„,arises from a three-site jump and is not nec-
essarily the square of the time v for a two-site
jump; a more accurate evaluation would require
a consideration of nearest-neighbor configura-
tions.

I also note that, with use of Eq. (ld),

1/R„=ecJN(Ez). (13d)

(14a)

where v&I, is a characteristic phonon frequency,
R is the length of the hop and W is the energy
difference between the final and initial states.
In the hopping regime the spread in energies be-
tween different sites is large enough that the
overlap integral cannot carry an electron from
one site to another; rather it has to wait for a
phonon to produce an energy fluctuation that
brings the two energies within an overlap inte-
gral of each other. The first term in the expo-
nential [Eq. (14)] comes from the overlap in-
tegral and the second is the Boltzmann factor,
R' being the energy fluctuation required to make
the transition possible.

I will now evaluate v„'and m* for the process.
For a hop of length R I have

&al(v. ) Sl'= 2(R/&)'. (14b)

The factor of 2 accounts for the two neighboring
sites P, one on each side along the x direction.
The energy difference for each hop is twice the
overlap integral, so that m* is given by

1 2(R/~)'
m~ Je ~'

0
(14c)

For activated electrons in a conduction band I
replace the N(E~) in ~ by N(E, ) and the N(E~) in
Eq. (1) by N(E,) exp[(ZF —E, )/kT]. Since the
number of electrons in the conduction band is
kTN(E, ) exp[(E~ -E,)/kT], it is clear from Eq.
(13d) that RH is changed by a factor kT/J from
the free-electron value.

(b) Hopping regime: In this regime the elec-
tron makes transitions with the assistance of
phonons; the mean time for a single-phonon hop-
ping process is given by'

1/v = v~zexp[- 2oR —W/kT],

830

p„=2Z(ea/8)a' JN(EF). (13c) where J0e ~ is the overlap integral.
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o'„,=(e'H/c)(4/JgR'N(E p)v ph'

&& exp[- 3&a —2W/k T]. (15b)

p. H and RH may then be obtained with use of Eqs.
(1c) and (ld). The second term in the exponent
in Eq. (15b) should actually be 4W/3kT rather
than 2W/kT. As mentioned previously, the term

inc„,is the mean time for a three-site hop;
it has been shown' that this requires less activa-
tion energy than two uncorrelated two-site hops.

Equations (15a) and (15b) may be compared with
Ref. 5, noting that the hop length B is given by'

R =2gN (16)

where N is the concentration of sites and g is a
numerical factor = 1.8. The exponential depen-
dence of pH onR is in agreement with Ref. 5;
however, a preexponential factor of (aN 'l') '
is not obtained in this simple analysis. I believe
that this factor arises from the averaging over
different values of R, which I have neglected here.

The results for multiphonon-assisted hopping
are obtained with a slight modification in the ex-
pression for T;

vugh
in Eq. (14a) is replaced by

Jo /k (WkT)' '.~' The expressions obtained for

With use of Eqs. (14) and (1) I have

o„„=2e'B'N(Ez)v~„exp[—2nR —W/k&], (15a)

which is the same as the result in Mott and Da-
vis. ' Similarly for a„wehave

O„„andp,
„

then agree with those derived in Ref.
5 for the case of strong coupling with phonons.

This Letter shows how the well-known expres-
sions for conductivity and Hall mobility in crys-
talline semiconductors can be used in disordered
systems with a simple and consistent reinterpre-
tation of the concepts of effective electronic mass,
velocity, and lifetime based on the density ma-
trix approach.
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