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Coil-Globule Phase Transition in a Single Polystyrene Chain in Cyclohexane
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The first observations of the entire temperature-induced coil-globule transition in a
single polystyrene polymer chain in cyclohexane is reported. The position of the coil-
globule transition. relative to the coexistence curve in the phase diagram of the system is
also shown. The transition occurred at 32 C with a width of 5 C for 2.6&10 -molecular-
weight polystyrene with a sharp decrease in hydrodynamic radius from 1250 A to 500 A
as the temperature was lowered.

The conformations of polymers in solution have
long been of interest. Within the last fif teen
years, theorists have described a discrete tran-
sition in polymer configuration from an extended
coil to a collapsed globule state. ' Recently this
laboratory reported the first observations of the
complete coil-globule transition of polyacryla-
mide [M~ =(5-6)&&10'] in acetone-water solutions. '
The transition was induced by varying the solvent
composition. This three-component system, how-

ever, is less desirable for study as the solvent
composition within the polymer coils may very
well differ from that in the bulk of the solvent, in-
creasing the complexity of any analysis. In this
Letter, we report our observation of the coil-
globule transition in a binary system: polysty-
rene in cyclohexane.

The best previous light-scattering measure-
ments' of the dimensions of polystyrene in cyclo-
hexane as a function of temperature were made
on samples of 4.4&10' molecular weight at con-
centrations down to 2&10 '

g ml '. The authors
were only able to observe the beginning of the
transition before interpolymer aggregation oc-
curred. They concluded that it would be unlikely
for the single-globule state to exist before Bggre-
g3tion began. Others, using neutron scattering
techniques, have also succeeded in observing
the onset of the transition using 2.9 &&10 -molecu-
lar-weight polystyrene at a concentration of 3.4
X10 '

g ml '. From our observations of the posi-
tion of the coil-globule transition relative to the
coexistence curve (shown later), it is clear why
these workers were unable to observe the com-
plete transition. Much lower concentrations are
required to ensure existence of the globular state
before the polymers aggregate. In this experi-
ment, for 2.7 &&10'-molecular-weight polystyrene,
concentrations as low as 10 '

g ml ' were neces-
sary to observe the globule state.

At such low concentrations, the portion of sig-
nal in excess of background scattering is very

small. The classical technique of determining
polymer dimensions with use of measurements
of the angular dependence of the scattered-light
intensity becomes extremely diff icult. This tech-
nique requires an accurate determination of a
small change in a very small signal. However,
even with such a low signal-to-noise ratio, one
is-able to use the technique of photon correlation
spectroscopy to make a straightforward measure-
ment of polymer dimensions.

The translational diffusion coefficient of parti-
cles in solution, D, is related to the hydrodyna-
mic radius, a, of the particles by the Stokes-Ein-
stein relation, ' D = k, 7'/(6m@a), where k B, T, and

g are Boltzmann's constant, temperature, and
viscosity of the solution, respectively. The dif-
fusion coefficient is obtained through the decay
rate of the photon correlation function of the scat-
tered- light intensity. '

Samples were prepared with use of 2.7~10'-
molecular-weight polystryene (Polysciences lot
no. 3-1761, M~/M„=1. 3), and high-quality cyclo-
hezane (Fisher 99-Mo1% pure), both used as sup-
plied with no additional purification. All glass-
ware and sample cells were very carefully cleaned
and handled to prevent contamination by dust or
other impurities. The solution temperature was
controlled with an accuracy of better than + 0.05 'C

and monitored with use of an immersible Teflon-
encased thermistor (YS1-702).

The source of incident light was an argon-ion
laser (Spectra-Physics 164-00) operated at 5145
A and intensities between 200 and 1200 mW. Scat-
tered light was detected with a photomultiplier
(RCA 8850) at an effective forward angle of 23'.
A digital photon correlator (Nicomp Instruments)
accumulated the correlation function of the scat-
tered light. The logarithm of the correlation
function was fitted by use of the method of cumu-
lants. From the fit, the diffusion coefficient and
the hydrodynamic radius were readily calculated.

We also made measurements of a portion of the
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coexistence curve of the polystyrene- cyclohexane
system. The coexistence curve is defined by the
states of temperature and solute concentration at
which the segment-segment attractions just begin
to dominate the segment-solvent attractions, and
the polymers phase separate, forming aggregates.
We monitored the intensity of the scattered light
to determine the temperature at which this aggre-
gation occurs. At the phase separation tempera-
ture both the intensity and the magnitude of the in-
tensity fluctuations increased because of the in-
crease in size of the scatterers. At higher con-
centrations, the increase in size was confirmed
by the hydrodynamic radius measurements. At
the lowest concentrations, the correlation func-
tion became difficult to measure, but intensity
measurements were sufficient to detect the in-

FIG. 1. The temperature dependence of the hydrody-
namic radius of polystyrene I+ =2.7X 10 in cyclohexane
is plotted for several concentrations of polystyrene. A

collapse in radius occurs at 32'C. The transition width
is approximately 5 C. At higher concentrations the poly-
mers aggregated into clusters preventing measurement
of single-polymer dimensions at lower temperatures.
At each concentration before the onset of aggregation,
though, the radius follows approximately the same tem-
perature dependence.
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crease sn particle size.
Figure 1 shows the hydrodynamic radius of the

polymer chains as a function of temperature for
several concentrations of polystyrene. The ex-
tended coil has a hydrodynamic radius of about
1250 A, and collapses at 32 'C to the globular
state having a radius of about 500 A. The width
of the transition is about 5 C. Although most
measurements were made while lowering the tem-
perature of the solution, the transition could be
reversed upon raising the temperature. The sol-
id circles in Fig. 2 indicate the states of tempera-
ture and concentration at which phase separation
occurred by interpolymer aggregation. The open
circles indicate the coil-globule transtion temper-
ature measured for several concentrations. The
transition occurred at approximately the same
temperature for each concentration. In taking in-
to account the logarithmic scale of the concentra-
tion axis, it is apparent that the coexistence
curve is remarkably flat. Very low concentra-
tions are, indeed, necessary in order to reach
the region of globule states below the coil-globule
transition line and above the coexistence curve.

In addition to the correlation in the scattered

FIG. 2. A portion of the phase diagram of polystyrene
in cyclohexane is shown. The coil-globule transition
temperature is plotted as a function of concentration
(open circles). The transition region is shaded. The

phase separation temperatures for several concentra-
tions are also plotted (solid circles). The concentra-
tion axis is logarithmic; the phase separation temper-
ature falls quite slowly with decreasing concentration.
At the lowest concentrations indicated on the coexistence
curve the coil-globule transition could not be measured
because the signal had become too weak.
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photons due to the translational diffusion of the
scattering molecules, there can be a large corre-
lated signal resulting from scattering associated
with intramolecular motion. ' This signal would
make the apparent diffusion coefficient, calculated
under the assumption that the scattered-light in-
tensity fluctuated only because of translational
diffusion of the polymer, larger than its actual
value. By going to a forward-scattering angle,
the contribution to the correlation function due to
scattering from the internal motion can be re-
duced. For a 23 forward-scattering angle, the
contribution is estimated to be less than 10%. It
will be of interest to make use of the scattering
associated with the internal motions of the poly-
mers to determine the amplitude and relaxation
time of the internal modes as the polymer under-
goes collapse.
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